Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

The identification of protein domains that mediate functional interactions between Rab-GTPases and RabGAPs using 3D protein modeling.

Davie JJ, Faitar SL.

Adv Appl Bioinform Chem. 2017 Apr 10;10:47-56. doi: 10.2147/AABC.S121245. eCollection 2017.

2.

Rab GTPases: The Key Players in the Molecular Pathway of Parkinson's Disease.

Shi MM, Shi CH, Xu YM.

Front Cell Neurosci. 2017 Mar 28;11:81. doi: 10.3389/fncel.2017.00081. eCollection 2017. Review.

3.

TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells.

Oguchi ME, Noguchi K, Fukuda M.

PLoS One. 2017 Apr 6;12(4):e0174883. doi: 10.1371/journal.pone.0174883. eCollection 2017.

4.

Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

Chen YN, Gu X, Zhou XE, Wang W, Cheng D, Ge Y, Ye F, Xu HE, Lv Z.

Protein Sci. 2017 Apr;26(4):834-846. doi: 10.1002/pro.3132. Epub 2017 Mar 1.

PMID:
28168758
5.

RAB10 Interacts with the Male Germ Cell-Specific GTPase-Activating Protein during Mammalian Spermiogenesis.

Lin YH, Ke CC, Wang YY, Chen MF, Chen TM, Ku WC, Chiang HS, Yeh CH.

Int J Mol Sci. 2017 Jan 5;18(1). pii: E97. doi: 10.3390/ijms18010097.

6.

Architecture and mechanism of the late endosomal Rab7-like Ypt7 guanine nucleotide exchange factor complex Mon1-Ccz1.

Kiontke S, Langemeyer L, Kuhlee A, Schuback S, Raunser S, Ungermann C, Kümmel D.

Nat Commun. 2017 Jan 4;8:14034. doi: 10.1038/ncomms14034.

7.

Structural and mechanistic insights into regulation of the retromer coat by TBC1d5.

Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK.

Nat Commun. 2016 Nov 9;7:13305. doi: 10.1038/ncomms13305.

8.

Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes.

Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V.

Elife. 2016 Oct 8;5. pii: e20417. doi: 10.7554/eLife.20417.

9.

Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis.

Lepore D, Spassibojko O, Pinto G, Collins RN.

J Cell Biol. 2016 Sep 12;214(6):691-703. doi: 10.1083/jcb.201602038.

10.

Recessive Inactivating Mutations in TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.

Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, Nguyen A, Leuzzi V, Webster R, Pizzuti A, Marvin CT, Ishak GE, Ardern-Holmes S, Richmond Z; University of Washington Center for Mendelian Genomics., Bamshad MJ, Ortiz-Gonzalez XR, Tartaglia M, Chopra M, Doherty D.

Am J Hum Genet. 2016 Apr 7;98(4):772-81. doi: 10.1016/j.ajhg.2016.01.016. Epub 2016 Mar 31.

11.

Invited review: Small GTPases and their GAPs.

Mishra AK, Lambright DG.

Biopolymers. 2016 Aug;105(8):431-48. doi: 10.1002/bip.22833. Review.

PMID:
26972107
12.

Structural Basis of the Interaction between Tuberous Sclerosis Complex 1 (TSC1) and Tre2-Bub2-Cdc16 Domain Family Member 7 (TBC1D7).

Qin J, Wang Z, Hoogeveen-Westerveld M, Shen G, Gong W, Nellist M, Xu W.

J Biol Chem. 2016 Apr 15;291(16):8591-601. doi: 10.1074/jbc.M115.701870. Epub 2016 Feb 18.

13.

RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

Marubashi S, Shimada H, Fukuda M, Ohbayashi N.

J Biol Chem. 2016 Jan 15;291(3):1427-40. doi: 10.1074/jbc.M115.684043. Epub 2015 Nov 30.

14.

Locking GTPases covalently in their functional states.

Wiegandt D, Vieweg S, Hofmann F, Koch D, Li F, Wu YW, Itzen A, Müller MP, Goody RS.

Nat Commun. 2015 Jul 16;6:7773. doi: 10.1038/ncomms8773.

15.

Expression and intracellular localization of TBC1D9, a Rab GTPase-accelerating protein, in mouse testes.

Nakamura Y, Asano A, Hosaka Y, Takeuchi T, Iwanaga T, Yamano Y.

Exp Anim. 2015;64(4):415-24. doi: 10.1538/expanim.15-0016. Epub 2015 Jun 29.

16.

A New Member of the TBC1D15 Family from Chiloscyllium plagiosum: Rab GTPase-Activating Protein Based on Rab7 as a Substrate.

Li Y, Wang W, Cheng D, Wang T, Lu C, Chen J, Nie Z, Zhang W, Lv Z, Wu W, Shu J.

Mar Drugs. 2015 May 13;13(5):2955-66. doi: 10.3390/md13052955.

17.

TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabERAB11.

Pinar M, Arst HN Jr, Pantazopoulou A, Tagua VG, de los Ríos V, Rodríguez-Salarichs J, Díaz JF, Peñalva MA.

Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4346-51. doi: 10.1073/pnas.1419168112. Epub 2015 Mar 23.

18.

Measuring Rab GTPase-activating protein (GAP) activity in live cells and extracts.

Nottingham RM, Pfeffer SR.

Methods Mol Biol. 2015;1298:61-71. doi: 10.1007/978-1-4939-2569-8_5.

19.

Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit.

Scarfone I, Venturetti M, Hotz M, Lengefeld J, Barral Y, Piatti S.

PLoS Genet. 2015 Feb 6;11(2):e1004938. doi: 10.1371/journal.pgen.1004938. eCollection 2015 Feb.

20.

RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy.

Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C.

Autophagy. 2014;10(12):2297-309. doi: 10.4161/15548627.2014.994359.

Supplemental Content

Support Center