Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

Schmitz RJ, Harrison D, Wang HM, Shultz SJ.

J Athl Train. 2017 Jun 2;52(6):560-566. doi: 10.4085/1062-2050-52.4.05.

PMID:
28653865
2.

Discovery of circulating proteins associated to knee radiographic osteoarthritis.

Lourido L, Ayoglu B, Fernández-Tajes J, Oreiro N, Henjes F, Hellström C, Schwenk JM, Ruiz-Romero C, Nilsson P, Blanco FJ.

Sci Rep. 2017 Mar 9;7(1):137. doi: 10.1038/s41598-017-00195-8.

3.
4.

Accuracy of magnetic resonance imaging for measuring maturing cartilage: A phantom study.

McKinney JR, Sussman MS, Moineddin R, Amirabadi A, Rayner T, Doria AS.

Clinics (Sao Paulo). 2016 Jul;71(7):404-11. doi: 10.6061/clinics/2016(07)09.

5.

Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI.

Kaiser J, Monawer A, Chaudhary R, Johnson KM, Wieben O, Kijowski R, Thelen DG.

Med Eng Phys. 2016 Oct;38(10):1131-5. doi: 10.1016/j.medengphy.2016.06.016. Epub 2016 Jul 4.

PMID:
27387902
6.

Higher Knee Flexion Moment During the Second Half of the Stance Phase of Gait Is Associated With the Progression of Osteoarthritis of the Patellofemoral Joint on Magnetic Resonance Imaging.

Teng HL, MacLeod TD, Link TM, Majumdar S, Souza RB.

J Orthop Sports Phys Ther. 2015 Sep;45(9):656-64. doi: 10.2519/jospt.2015.5859. Epub 2015 Jul 10.

7.

Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative.

Dam EB, Lillholm M, Marques J, Nielsen M.

J Med Imaging (Bellingham). 2015 Apr;2(2):024001. doi: 10.1117/1.JMI.2.2.024001. Epub 2015 Apr 20.

8.

Total Knee Replacement as a Knee Osteoarthritis Outcome: Predictors Derived from a 4-Year Long-Term Observation following a Randomized Clinical Trial Using Chondroitin Sulfate.

Raynauld JP, Martel-Pelletier J, Dorais M, Haraoui B, Choquette D, Abram F, Beaulieu A, Bessette L, Morin F, Wildi LM, Pelletier JP.

Cartilage. 2013 Jul;4(3):219-26. doi: 10.1177/1947603513483547.

9.

Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair: International Cartilage Repair Society Recommendations Based on Current Scientific Evidence and Standards of Clinical Care.

Mithoefer K, Saris DB, Farr J, Kon E, Zaslav K, Cole BJ, Ranstam J, Yao J, Shive M, Levine D, Dalemans W, Brittberg M.

Cartilage. 2011 Apr;2(2):100-21. doi: 10.1177/1947603510392913.

10.

Effects of PVA coated nanoparticles on human immune cells.

Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoff P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F.

Int J Nanomedicine. 2015 May 8;10:3429-45. doi: 10.2147/IJN.S75936. eCollection 2015.

11.

Meniscal Transplantation and its Effect on Osteoarthritis Risk: an abridged protocol for the MeTEOR study: a comprehensive cohort study incorporating a pilot randomised controlled trial.

Smith NA, Achten J, Parsons N, Wright D, Parkinson B, Thompson P, Hutchinson CE, Spalding T, Costa ML.

Bone Joint Res. 2015 Jun;4(6):93-8. doi: 10.1302/2046-3758.46.2000318.

12.

Accuracy of 3D dual echo steady state (DESS) MR arthrography to quantify acetabular cartilage thickness.

Abraham CL, Bangerter NK, McGavin LS, Peters CL, Drew AJ, Hanrahan CJ, Anderson AE.

J Magn Reson Imaging. 2015 Nov;42(5):1329-38. doi: 10.1002/jmri.24902. Epub 2015 Apr 6.

13.

Observation of sGAG content of human hip joint cartilage in different old age groups based on EPIC micro-CT.

Li XF, Cai XR, Fan F, Niu HJ, Li SY, Li DY, Fan YB, Qin YX.

Connect Tissue Res. 2015 Apr;56(2):99-105. doi: 10.3109/03008207.2015.1009052. Epub 2015 Feb 3.

14.

Clinical utility of quantitative imaging.

Rosenkrantz AB, Mendiratta-Lala M, Bartholmai BJ, Ganeshan D, Abramson RG, Burton KR, Yu JP, Scalzetti EM, Yankeelov TE, Subramaniam RM, Lenchik L.

Acad Radiol. 2015 Jan;22(1):33-49. doi: 10.1016/j.acra.2014.08.011. Epub 2014 Oct 22. Review.

15.

Magnetic resonance imaging of osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis rabbit model.

Jia L, Chen J, Wang Y, Liu Y, Zhang Y, Chen W.

PLoS One. 2014 Dec 1;9(12):e113707. doi: 10.1371/journal.pone.0113707. eCollection 2014.

16.

Baseline knee adduction and flexion moments during walking are both associated with 5 year cartilage changes in patients with medial knee osteoarthritis.

Chehab EF, Favre J, Erhart-Hledik JC, Andriacchi TP.

Osteoarthritis Cartilage. 2014 Nov;22(11):1833-9. doi: 10.1016/j.joca.2014.08.009. Epub 2014 Aug 27.

17.

The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue.

McGoverin CM, Lewis K, Yang X, Bostrom MP, Pleshko N.

Appl Spectrosc. 2014;68(10):1168-75. doi: 10.1366/13-07327. Epub 2014 Oct 1.

18.

Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method.

Lee JG, Gumus S, Moon CH, Kwoh CK, Bae KT.

Med Phys. 2014 Sep;41(9):092303. doi: 10.1118/1.4893533.

19.

Magnetic resonance imaging of the ear for patient-specific reconstructive surgery.

Nimeskern L, Feldmann EM, Kuo W, Schwarz S, Goldberg-Bockhorn E, Dürr S, Müller R, Rotter N, Stok KS.

PLoS One. 2014 Aug 21;9(8):e104975. doi: 10.1371/journal.pone.0104975. eCollection 2014.

20.

Automatic atlas-based three-label cartilage segmentation from MR knee images.

Shan L, Zach C, Charles C, Niethammer M.

Med Image Anal. 2014 Oct;18(7):1233-46. doi: 10.1016/j.media.2014.05.008. Epub 2014 Jun 28.

Supplemental Content

Support Center