Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

Cooperative growth of Geobacter sulfurreducens and Clostridium pasteurianum with subsequent metabolic shift in glycerol fermentation.

Moscoviz R, de Fouchécour F, Santa-Catalina G, Bernet N, Trably E.

Sci Rep. 2017 Mar 13;7:44334. doi: 10.1038/srep44334.

2.

Properties of alternative microbial hosts used in synthetic biology: towards the design of a modular chassis.

Kim J, Salvador M, Saunders E, González J, Avignone-Rossa C, Jiménez JI.

Essays Biochem. 2016 Nov 30;60(4):303-313. Review.

3.

Microbiosensor for the detection of acetate in electrode-respiring biofilms.

Atci E, Babauta JT, Sultana ST, Beyenal H.

Biosens Bioelectron. 2016 Jul 15;81:517-23. doi: 10.1016/j.bios.2016.03.027. Epub 2016 Mar 15.

4.

Powerful Soil: Utilizing Microbial Fuel Cell Construction and Design in an Introductory Biology Course.

Jude CD, Jude BA.

J Microbiol Biol Educ. 2015 Dec 1;16(2):286-8. doi: 10.1128/jmbe.v16i2.934. eCollection 2015 Dec. No abstract available.

5.

Pyrosequencing Reveals a Core Community of Anodic Bacterial Biofilms in Bioelectrochemical Systems from China.

Xiao Y, Zheng Y, Wu S, Zhang EH, Chen Z, Liang P, Huang X, Yang ZH, Ng IS, Chen BY, Zhao F.

Front Microbiol. 2015 Dec 16;6:1410. doi: 10.3389/fmicb.2015.01410. eCollection 2015.

6.

In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

Schkolnik G, Schmidt M, Mazza MG, Harnisch F, Musat N.

PLoS One. 2015 Dec 28;10(12):e0145871. doi: 10.1371/journal.pone.0145871. eCollection 2015.

7.

Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes.

Marques AC, Santos L, Costa MN, Dantas JM, Duarte P, Gonçalves A, Martins R, Salgueiro CA, Fortunato E.

Sci Rep. 2015 Apr 20;5:9910. doi: 10.1038/srep09910.

8.

Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

Wang VB, Yam JK, Chua SL, Zhang Q, Cao B, Chye JL, Yang L.

ScientificWorldJournal. 2014;2014:139653. doi: 10.1155/2014/139653. Epub 2014 Jul 6.

9.

Exploring the molecular mechanisms of electron shuttling across the microbe/metal space.

Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I, Soares CM, Louro RO.

Front Microbiol. 2014 Jun 27;5:318. doi: 10.3389/fmicb.2014.00318. eCollection 2014.

10.

Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics.

Koch C, Harnisch F, Schröder U, Müller S.

Front Microbiol. 2014 Jun 4;5:273. doi: 10.3389/fmicb.2014.00273. eCollection 2014.

11.

Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste.

Yamamoto S, Suzuki K, Araki Y, Mochihara H, Hosokawa T, Kubota H, Chiba Y, Rubaba O, Tashiro Y, Futamata H.

Microbes Environ. 2014;29(2):145-53. Epub 2014 Apr 30.

12.

Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater: influence of biocatalyst type on electricity production.

Ismail ZZ, Jaeel AJ.

ScientificWorldJournal. 2013 Dec 25;2013:713515. doi: 10.1155/2013/713515. eCollection 2013.

13.

Microbial population and functional dynamics associated with surface potential and carbon metabolism.

Ishii S, Suzuki S, Norden-Krichmar TM, Phan T, Wanger G, Nealson KH, Sekiguchi Y, Gorby YA, Bretschger O.

ISME J. 2014 May;8(5):963-78. doi: 10.1038/ismej.2013.217. Epub 2013 Dec 19.

14.

Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation.

Mao L, Verwoerd WS.

J Biol Eng. 2013 May 29;7(1):14. doi: 10.1186/1754-1611-7-14.

15.

Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells.

Wang VB, Chua SL, Cao B, Seviour T, Nesatyy VJ, Marsili E, Kjelleberg S, Givskov M, Tolker-Nielsen T, Song H, Loo JS, Yang L.

PLoS One. 2013 May 20;8(5):e63129. doi: 10.1371/journal.pone.0063129. Print 2013.

16.

Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust.

Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K, Hassel AW, Stratmann M, Widdel F.

Environ Microbiol. 2012 Jul;14(7):1772-87. doi: 10.1111/j.1462-2920.2012.02778.x. Epub 2012 May 23.

17.

A VOLTAMMETRIC FLAVIN MICROELECTRODE FOR USE IN BIOFILMS.

Nguyen HD, Renslow R, Babauta J, Ahmed B, Beyenal H.

Sens Actuators B Chem. 2012 Jan 3;161(1):929-937.

18.

Outlook for benefits of sediment microbial fuel cells with two bio-electrodes.

De Schamphelaire L, Rabaey K, Boeckx P, Boon N, Verstraete W.

Microb Biotechnol. 2008 Nov;1(6):446-62. doi: 10.1111/j.1751-7915.2008.00042.x. Review.

19.

Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell.

Michaelidou U, ter Heijne A, Euverink GJ, Hamelers HV, Stams AJ, Geelhoed JS.

Appl Environ Microbiol. 2011 Feb;77(3):1069-75. doi: 10.1128/AEM.02912-09. Epub 2010 Dec 3.

20.

Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.

Yang TH, Coppi MV, Lovley DR, Sun J.

Microb Cell Fact. 2010 Nov 22;9:90. doi: 10.1186/1475-2859-9-90.

Supplemental Content

Support Center