Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 52

1.

Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.

Davis KM, Schramma KR, Hansen WA, Bacik JP, Khare SD, Seyedsayamdost MR, Ando N.

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10420-10425. doi: 10.1073/pnas.1703663114. Epub 2017 Sep 11.

PMID:
28893989
2.

Structural studies of viperin, an antiviral radical SAM enzyme.

Fenwick MK, Li Y, Cresswell P, Modis Y, Ealick SE.

Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6806-6811. doi: 10.1073/pnas.1705402114. Epub 2017 Jun 12.

PMID:
28607080
3.

On the Role of Additional [4Fe-4S] Clusters with a Free Coordination Site in Radical-SAM Enzymes.

Mulliez E, Duarte V, Arragain S, Fontecave M, Atta M.

Front Chem. 2017 Mar 16;5:17. doi: 10.3389/fchem.2017.00017. eCollection 2017. Review.

4.

Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link.

Bruender NA, Wilcoxen J, Britt RD, Bandarian V.

Biochemistry. 2016 Apr 12;55(14):2122-34. doi: 10.1021/acs.biochem.6b00145. Epub 2016 Apr 1.

5.

Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.

Hover BM, Lilla EA, Yokoyama K.

Biochemistry. 2015 Dec 15;54(49):7229-36. doi: 10.1021/acs.biochem.5b00857. Epub 2015 Dec 1.

6.

The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer.

Melnyk RA, Coates JD.

BMC Genomics. 2015 Oct 26;16:862. doi: 10.1186/s12864-015-2011-5.

7.

Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.

Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM.

J Am Chem Soc. 2015 Jun 10;137(22):7111-21. doi: 10.1021/jacs.5b00498. Epub 2015 May 19.

8.

Molybdopterin biosynthesis-Mechanistic studies on a novel MoaA catalyzed insertion of a purine carbon into the ribose of GTP.

Mehta AP, Abdelwahed SH, Begley TP.

Biochim Biophys Acta. 2015 Sep;1854(9):1073-7. doi: 10.1016/j.bbapap.2015.04.008. Epub 2015 Apr 17. Review.

9.

Biosynthetic versatility and coordinated action of 5'-deoxyadenosyl radicals in deazaflavin biosynthesis.

Philmus B, Decamps L, Berteau O, Begley TP.

J Am Chem Soc. 2015 Apr 29;137(16):5406-13. doi: 10.1021/ja513287k. Epub 2015 Apr 20.

10.

The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds.

Nakai T, Ito H, Kobayashi K, Takahashi Y, Hori H, Tsubaki M, Tanizawa K, Okajima T.

J Biol Chem. 2015 Apr 24;290(17):11144-66. doi: 10.1074/jbc.M115.638320. Epub 2015 Mar 16.

11.

Design, synthesis and evaluation of Fe-S targeted adenosine 5'-phosphosulfate reductase inhibitors.

Paritala H, Suzuki Y, Carroll KS.

Nucleosides Nucleotides Nucleic Acids. 2015;34(3):199-220. doi: 10.1080/15257770.2014.978012.

12.

C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.

Hover BM, Yokoyama K.

J Am Chem Soc. 2015 Mar 11;137(9):3352-9. doi: 10.1021/ja512997j. Epub 2015 Mar 2.

13.

Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM).

Cutsail GE 3rd, Telser J, Hoffman BM.

Biochim Biophys Acta. 2015 Jun;1853(6):1370-94. doi: 10.1016/j.bbamcr.2015.01.025. Epub 2015 Feb 14. Review.

14.

X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly.

Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC, De La Paz L, Swartz JR, Essex JW, Britt RD, Roach PL.

Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1362-7. doi: 10.1073/pnas.1417252112. Epub 2015 Jan 20.

15.

Radical S-adenosyl-L-methionine chemistry in the synthesis of hydrogenase and nitrogenase metal cofactors.

Byer AS, Shepard EM, Peters JW, Broderick JB.

J Biol Chem. 2015 Feb 13;290(7):3987-94. doi: 10.1074/jbc.R114.578161. Epub 2014 Dec 4. Review.

16.

Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions.

Mehta AP, Abdelwahed SH, Mahanta N, Fedoseyenko D, Philmus B, Cooper LE, Liu Y, Jhulki I, Ealick SE, Begley TP.

J Biol Chem. 2015 Feb 13;290(7):3980-6. doi: 10.1074/jbc.R114.623793. Epub 2014 Dec 4. Review.

17.

SPASM and twitch domains in S-adenosylmethionine (SAM) radical enzymes.

Grell TA, Goldman PJ, Drennan CL.

J Biol Chem. 2015 Feb 13;290(7):3964-71. doi: 10.1074/jbc.R114.581249. Epub 2014 Dec 4. Review.

18.

The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.

Yokoyama K, Leimkühler S.

Biochim Biophys Acta. 2015 Jun;1853(6):1335-49. doi: 10.1016/j.bbamcr.2014.09.021. Epub 2014 Sep 28. Review.

19.

Recent advances in radical SAM enzymology: new structures and mechanisms.

Wang J, Woldring RP, Román-Meléndez GD, McClain AM, Alzua BR, Marsh EN.

ACS Chem Biol. 2014 Sep 19;9(9):1929-38. doi: 10.1021/cb5004674. Epub 2014 Jul 16. Review.

20.

Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.

Stich TA, Myers WK, Britt RD.

Acc Chem Res. 2014 Aug 19;47(8):2235-43. doi: 10.1021/ar400235n. Epub 2014 Jul 3.

Supplemental Content

Support Center