Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38

1.

Time-lapse changes of in vivo injured neuronal substructures in the central nervous system after low energy two-photon nanosurgery.

Zhao Z, Chen S, Luo Y, Li J, Badea S, Ren C, Wu W.

Neural Regen Res. 2017 May;12(5):751-756. doi: 10.4103/1673-5374.206644.

2.

On chip cryo-anesthesia of Drosophila larvae for high resolution in vivo imaging applications.

Chaudhury AR, Insolera R, Hwang RD, Fridell YW, Collins C, Chronis N.

Lab Chip. 2017 Jun 27;17(13):2303-2322. doi: 10.1039/c7lc00345e.

PMID:
28613308
3.

The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans.

Chisholm AD, Hutter H, Jin Y, Wadsworth WG.

Genetics. 2016 Nov;204(3):849-882. doi: 10.1534/genetics.115.186262. Review.

4.

In vivo dendrite regeneration after injury is different from dendrite development.

Thompson-Peer KL, DeVault L, Li T, Jan LY, Jan YN.

Genes Dev. 2016 Aug 1;30(15):1776-89. doi: 10.1101/gad.282848.116.

5.

Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth.

Chung SH, Awal MR, Shay J, McLoed MM, Mazur E, Gabel CV.

Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2852-60. doi: 10.1073/pnas.1600564113. Epub 2016 Apr 12.

6.

Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier.

Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M.

Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):1074-9. doi: 10.1073/pnas.1520398113. Epub 2016 Jan 11.

7.

Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans.

Wakabayashi T, Sakata K, Togashi T, Itoi H, Shinohe S, Watanabe M, Shingai R.

BMC Neurosci. 2015 Nov 19;16:79. doi: 10.1186/s12868-015-0220-0.

8.

Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs.

Gruner M, Nelson D, Winbush A, Hintz R, Ryu L, Chung SH, Kim K, Gabel CV, van der Linden AM.

PLoS Genet. 2014 Oct 30;10(10):e1004707. doi: 10.1371/journal.pgen.1004707. eCollection 2014 Oct.

9.

Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons.

Luo L, Cook N, Venkatachalam V, Martinez-Velazquez LA, Zhang X, Calvo AC, Hawk J, MacInnis BL, Frank M, Ng JH, Klein M, Gershow M, Hammarlund M, Goodman MB, Colón-Ramos DA, Zhang Y, Samuel AD.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2776-81. doi: 10.1073/pnas.1315205111. Epub 2014 Feb 3.

10.

Femtosecond laser ablation reveals antagonistic sensory and neuroendocrine signaling that underlie C. elegans behavior and development.

Chung SH, Schmalz A, Ruiz RCH, Gabel CV, Mazur E.

Cell Rep. 2013 Jul 25;4(2):316-326. doi: 10.1016/j.celrep.2013.06.027. Epub 2013 Jul 18.

11.

In vivo neuronal calcium imaging in C. elegans.

Chung SH, Sun L, Gabel CV.

J Vis Exp. 2013 Apr 10;(74). doi: 10.3791/50357.

12.

Femtosecond laser axotomy in Caenorhabditis elegans and collateral damage assessment using a combination of linear and nonlinear imaging techniques.

Santos SI, Mathew M, Olarte OE, Psilodimitrakopoulos S, Loza-Alvarez P.

PLoS One. 2013;8(3):e58600. doi: 10.1371/journal.pone.0058600. Epub 2013 Mar 6.

13.

Microfluidic tools for developmental studies of small model organisms--nematodes, fruit flies, and zebrafish.

Hwang H, Lu H.

Biotechnol J. 2013 Feb;8(2):192-205. doi: 10.1002/biot.201200129. Epub 2012 Nov 19. Review.

14.

Neural regeneration in Caenorhabditis elegans.

El Bejjani R, Hammarlund M.

Annu Rev Genet. 2012;46:499-513. doi: 10.1146/annurev-genet-110711-155550. Epub 2012 Sep 4. Review.

15.

The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans.

Pinan-Lucarre B, Gabel CV, Reina CP, Hulme SE, Shevkoplyas SS, Slone RD, Xue J, Qiao Y, Weisberg S, Roodhouse K, Sun L, Whitesides GM, Samuel A, Driscoll M.

PLoS Biol. 2012;10(5):e1001331. doi: 10.1371/journal.pbio.1001331. Epub 2012 May 22.

16.

Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation.

Wang HW, Cheng CW, Li CW, Chang HW, Wu PH, Wang GJ.

Int J Nanomedicine. 2012;7:1865-73. doi: 10.2147/IJN.S29969. Epub 2012 Apr 10.

17.

Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae.

Ghannad-Rezaie M, Wang X, Mishra B, Collins C, Chronis N.

PLoS One. 2012;7(1):e29869. doi: 10.1371/journal.pone.0029869. Epub 2012 Jan 23.

18.

Laser microsurgery in Caenorhabditis elegans.

Fang-Yen C, Gabel CV, Samuel AD, Bargmann CI, Avery L.

Methods Cell Biol. 2012;107:177-206. doi: 10.1016/B978-0-12-394620-1.00006-0. Review.

19.

Constructing a low-budget laser axotomy system to study axon regeneration in C. elegans.

Williams W, Nix P, Bastiani M.

J Vis Exp. 2011 Nov 15;(57). pii: 3331. doi: 10.3791/3331.

20.

Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans.

Beverly M, Anbil S, Sengupta P.

J Neurosci. 2011 Aug 10;31(32):11718-27. doi: 10.1523/JNEUROSCI.1098-11.2011.

Supplemental Content

Support Center