Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 184

1.

The Inherent Asymmetry of DNA Replication.

Snedeker J, Wooten M, Chen X.

Annu Rev Cell Dev Biol. 2017 Oct 6;33:291-318. doi: 10.1146/annurev-cellbio-100616-060447. Epub 2017 Aug 11.

PMID:
28800257
2.

Review of stochastic hybrid systems with applications in biological systems modeling and analysis.

Li X, Omotere O, Qian L, Dougherty ER.

EURASIP J Bioinform Syst Biol. 2017 Dec;2017(1):8. doi: 10.1186/s13637-017-0061-5. Epub 2017 Jun 30. Review.

3.
4.

Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli.

Galli E, Midonet C, Paly E, Barre FX.

PLoS Genet. 2017 Mar 30;13(3):e1006702. doi: 10.1371/journal.pgen.1006702. eCollection 2017 Mar.

5.

Effect of chromatin structure on quantitative ultrasound parameters.

Pasternak M, Doss L, Farhat G, Al-Mahrouki A, Kim CH, Kolios M, Tran WT, Czarnota GJ.

Oncotarget. 2017 Mar 21;8(12):19631-19644. doi: 10.18632/oncotarget.14816.

6.

A journey through the microscopic ages of DNA replication.

Reinhart M, Cardoso MC.

Protoplasma. 2017 May;254(3):1151-1162. doi: 10.1007/s00709-016-1058-8. Epub 2016 Dec 9. Review.

7.

Split hand/foot malformation genetics supports the chromosome 7 copy segregation mechanism for human limb development.

Klar AJ.

Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). pii: 20150415. Review.

8.
9.

DNA replication and beyond.

Gall JG.

Nat Rev Mol Cell Biol. 2016 Aug;17(8):464. doi: 10.1038/nrm.2016.89. Epub 2016 Jun 29. No abstract available.

10.

Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes.

Yadav T, Whitehouse I.

Cell Rep. 2016 Apr 13. pii: S2211-1247(16)30330-8. doi: 10.1016/j.celrep.2016.03.059. [Epub ahead of print]

11.

Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing.

Fennessy RT, Owen-Hughes T.

Nucleic Acids Res. 2016 Sep 6;44(15):7189-203. doi: 10.1093/nar/gkw331. Epub 2016 Apr 22.

12.

The origin of in situ hybridization - A personal history.

Gall JG.

Methods. 2016 Apr 1;98:4-9. doi: 10.1016/j.ymeth.2015.11.026. Epub 2015 Nov 30. Review.

13.

Accelerating scientific publication in biology.

Vale RD.

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13439-46. doi: 10.1073/pnas.1511912112. Epub 2015 Oct 27.

14.

Serendipity and the times.

Stahl FF.

Bacteriophage. 2015 Jun 9;5(3):e1059003. eCollection 2015 Jul-Sep. No abstract available.

15.

Polymerase δ replicates both strands after homologous recombination-dependent fork restart.

Miyabe I, Mizuno K, Keszthelyi A, Daigaku Y, Skouteri M, Mohebi S, Kunkel TA, Murray JM, Carr AM.

Nat Struct Mol Biol. 2015 Nov;22(11):932-8. doi: 10.1038/nsmb.3100. Epub 2015 Oct 5.

16.

Chromosome replication, cell growth, division and shape: a personal perspective.

Zaritsky A, Woldringh CL.

Front Microbiol. 2015 Aug 3;6:756. doi: 10.3389/fmicb.2015.00756. eCollection 2015. Review.

17.

The Fork in the Road: Histone Partitioning During DNA Replication.

Annunziato AT.

Genes (Basel). 2015 Jun 23;6(2):353-71. doi: 10.3390/genes6020353. Review.

18.

A balanced perspective on unbalanced growth and thymineless death.

Hanawalt PC.

Front Microbiol. 2015 Jun 5;6:504. doi: 10.3389/fmicb.2015.00504. eCollection 2015. Review.

19.

The development of solid-state NMR of membrane proteins.

Opella SJ.

Biomed Spectrosc Imaging. 2014;3(2):81-105.

20.

Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling.

Malik AA, Dannert H, Griffiths RI, Thomson BC, Gleixner G.

Front Microbiol. 2015 Apr 9;6:268. doi: 10.3389/fmicb.2015.00268. eCollection 2015.

Supplemental Content

Support Center