Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

Mukherjee N, Pal Choudhuri S, Delay RJ, Delay ER.

PLoS One. 2017 Sep 26;12(9):e0185473. doi: 10.1371/journal.pone.0185473. eCollection 2017.

2.

Whole transcriptome profiling of taste bud cells.

Sukumaran SK, Lewandowski BC, Qin Y, Kotha R, Bachmanov AA, Margolskee RF.

Sci Rep. 2017 Aug 8;7(1):7595. doi: 10.1038/s41598-017-07746-z.

3.

Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation.

Ren W, Aihara E, Lei W, Gheewala N, Uchiyama H, Margolskee RF, Iwatsuki K, Jiang P.

Sci Rep. 2017 Jun 21;7(1):4004. doi: 10.1038/s41598-017-04099-5.

4.

Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment.

Lemons K, Fu Z, Aoudé I, Ogura T, Sun J, Chang J, Mbonu K, Matsumoto I, Arakawa H, Lin W.

eNeuro. 2017 Jun 12;4(3). pii: ENEURO.0135-17.2017. doi: 10.1523/ENEURO.0135-17.2017. eCollection 2017 May-Jun.

5.

2,4,6-Trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide increases calcium influx in lipopolisaccharide-pre-treated arteries.

Grześk E, Szadujkis-Szadurska K, Bloch-Bogusławska E, Wiciński M, Malinowski B, KołTan S, Tejza B, Pujanek M, GrześK G.

Exp Ther Med. 2017 Feb;13(2):766-770. doi: 10.3892/etm.2016.3986. Epub 2016 Dec 19.

6.

Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells.

Ma Z, Saung WT, Foskett JK.

J Neurophysiol. 2017 May 1;117(5):1865-1876. doi: 10.1152/jn.00835.2016. Epub 2017 Feb 15.

PMID:
28202574
7.

Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.

Biggs BT, Tang T, Krimm RF.

PLoS One. 2016 Feb 22;11(2):e0148315. doi: 10.1371/journal.pone.0148315. eCollection 2016.

8.

Effect of 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzene-sulfonamide on calcium influx in three contraction models.

Grześk E, Szadujkis-Szadurska K, Wiciński M, Malinowski B, Sinjab TA, Tejza B, Pujanek M, Janiszewska E, Kopczyńska A, Grześk G.

Biomed Rep. 2016 Jan;4(1):117-121. Epub 2015 Nov 10.

9.

The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction.

Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM, Wilson CE, Cooper AJ, Chick WS, Hill-Eubanks DC, Nelson MT, Kinnamon SC, Liman ER.

Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E229-38. doi: 10.1073/pnas.1514282112. Epub 2015 Dec 1.

10.

Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation.

Huang T, Ma L, Krimm RF.

Dev Biol. 2015 Sep 15;405(2):225-36. doi: 10.1016/j.ydbio.2015.07.006. Epub 2015 Jul 8.

11.

Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

Vandenbeuch A, Anderson CB, Kinnamon SC.

Chem Senses. 2015 Sep;40(7):461-7. doi: 10.1093/chemse/bjv034. Epub 2015 Jul 1.

12.

Honing in on the ATP Release Channel in Taste Cells.

Medler KF.

Chem Senses. 2015 Sep;40(7):449-51. doi: 10.1093/chemse/bjv035. Epub 2015 Jun 30.

13.

A proton current associated with sour taste: distribution and functional properties.

Bushman JD, Ye W, Liman ER.

FASEB J. 2015 Jul;29(7):3014-26. doi: 10.1096/fj.14-265694. Epub 2015 Apr 9.

14.

Calcium signaling in taste cells.

Medler KF.

Biochim Biophys Acta. 2015 Sep;1853(9):2025-32. doi: 10.1016/j.bbamcr.2014.11.013. Epub 2014 Nov 16. Review.

15.

Increases in intracellular calcium via activation of potentially multiple phospholipase C isozymes in mouse olfactory neurons.

Szebenyi SA, Ogura T, Sathyanesan A, AlMatrouk AK, Chang J, Lin W.

Front Cell Neurosci. 2014 Oct 21;8:336. doi: 10.3389/fncel.2014.00336. eCollection 2014.

16.

A permeability barrier surrounds taste buds in lingual epithelia.

Dando R, Pereira E, Kurian M, Barro-Soria R, Chaudhari N, Roper SD.

Am J Physiol Cell Physiol. 2015 Jan 1;308(1):C21-32. doi: 10.1152/ajpcell.00157.2014. Epub 2014 Sep 10. Erratum in: Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C684.

17.

TRPs in taste and chemesthesis.

Roper SD.

Handb Exp Pharmacol. 2014;223:827-71. doi: 10.1007/978-3-319-05161-1_5. Review.

18.

Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells.

Parker MR, Feng D, Chamuris B, Margolskee RF.

Neurosci Lett. 2014 Jun 13;571:72-7. doi: 10.1016/j.neulet.2014.04.047. Epub 2014 May 6.

19.

Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5.

López F, Delgado R, López R, Bacigalupo J, Restrepo D.

J Neurosci. 2014 Feb 26;34(9):3268-78. doi: 10.1523/JNEUROSCI.4903-13.2014.

20.

Differential localization of NT-3 and TrpM5 in glomeruli of the olfactory bulb of mice.

Rolen SH, Salcedo E, Restrepo D, Finger TE.

J Comp Neurol. 2014 Jun 1;522(8):1929-40. doi: 10.1002/cne.23512.

Supplemental Content

Support Center