Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 48


Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases.

Speziale P, Rindi S, Pietrocola G.

Microorganisms. 2018 Mar 13;6(1). pii: E25. doi: 10.3390/microorganisms6010025. Review.


Staphylococcal protein A contributes to persistent colonization of mice with Staphylococcus aureus.

Sun Y, Emolo C, Holtfreter S, Wiles S, Kreiswirth B, Missiakas D, Schneewind O.

J Bacteriol. 2018 Feb 12. pii: JB.00735-17. doi: 10.1128/JB.00735-17. [Epub ahead of print]


Development of persistent gastrointestinal S. aureus carriage in mice.

Flaxman A, van Diemen PM, Yamaguchi Y, Allen E, Lindemann C, Rollier CS, Milicic A, Wyllie DH.

Sci Rep. 2017 Sep 29;7(1):12415. doi: 10.1038/s41598-017-12576-0.


Antibodies to Staphylococcus aureus capsular polysaccharides 5 and 8 perform similarly in vitro but are functionally distinct in vivo.

Liu B, Park S, Thompson CD, Li X, Lee JC.

Virulence. 2017 Aug 18;8(6):859-874. doi: 10.1080/21505594.2016.1270494. Epub 2016 Dec 9.


Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.

Crosby HA, Kwiecinski J, Horswill AR.

Adv Appl Microbiol. 2016;96:1-41. doi: 10.1016/bs.aambs.2016.07.018. Epub 2016 Aug 4. Review.


In Vitro and in Vivo Antistaphylococcal Activity Determination of the New Recombinant Lysostaphin Protein.

Abtahi H, Farhangnia L, Ghaznavi-Rad E.

Jundishapur J Microbiol. 2016 Mar 2;9(3):e28489. doi: 10.5812/jjm.28489. eCollection 2016 Mar.


Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus.

Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, Simmons C, Schmelcher M, Camp M, Dong S, Baker JR, Sheen TR, Doran KS, Pritchard DG, Almeida RA, Nelson DC, Marriott I, Lee JC, Donovan DM.

Sci Rep. 2016 Apr 28;6:25063. doi: 10.1038/srep25063.


The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells.

Askarian F, Ajayi C, Hanssen AM, van Sorge NM, Pettersen I, Diep DB, Sollid JU, Johannessen M.

Sci Rep. 2016 Feb 29;6:22134. doi: 10.1038/srep22134.


The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens.

Lacey KA, Geoghegan JA, McLoughlin RM.

Pathogens. 2016 Feb 17;5(1). pii: E22. doi: 10.3390/pathogens5010022. Review.


Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis.

Reyes-Robles T, Lubkin A, Alonzo F 3rd, Lacy DB, Torres VJ.

EMBO Rep. 2016 Mar;17(3):428-40. doi: 10.15252/embr.201540994. Epub 2016 Feb 8. Erratum in: EMBO Rep. 2016 May;17(5):780.


Innate Immune Signaling Activated by MDR Bacteria in the Airway.

Parker D, Ahn D, Cohen T, Prince A.

Physiol Rev. 2016 Jan;96(1):19-53. doi: 10.1152/physrev.00009.2015. Review.


Development of an in vitro colonization model to investigate Staphylococcus aureus interactions with airway epithelia.

Kiedrowski MR, Paharik AE, Ackermann LW, Shelton AU, Singh SB, Starner TD, Horswill AR.

Cell Microbiol. 2016 May;18(5):720-32. doi: 10.1111/cmi.12543. Epub 2016 Jan 12.


Staphylococcus aureus Colonization of the Mouse Gastrointestinal Tract Is Modulated by Wall Teichoic Acid, Capsule, and Surface Proteins.

Misawa Y, Kelley KA, Wang X, Wang L, Park WB, Birtel J, Saslowsky D, Lee JC.

PLoS Pathog. 2015 Jul 22;11(7):e1005061. doi: 10.1371/journal.ppat.1005061. eCollection 2015 Jul.


Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease.

Jenkins A, Diep BA, Mai TT, Vo NH, Warrener P, Suzich J, Stover CK, Sellman BR.

MBio. 2015 Feb 17;6(1):e02272-14. doi: 10.1128/mBio.02272-14.


Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus.

Thammavongsa V, Rauch S, Kim HK, Missiakas DM, Schneewind O.

Vaccine. 2015 Jan 15;33(4):523-6. doi: 10.1016/j.vaccine.2014.11.051. Epub 2014 Dec 6.


Staphylococcus aureus ST398 gene expression profiling during ex vivo colonization of porcine nasal epithelium.

Tulinski P, Duim B, Wittink FR, Jonker MJ, Breit TM, van Putten JP, Wagenaar JA, Fluit AC.

BMC Genomics. 2014 Oct 20;15:915. doi: 10.1186/1471-2164-15-915.


A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization.

Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C.

PLoS Pathog. 2014 May 1;10(5):e1004089. doi: 10.1371/journal.ppat.1004089. eCollection 2014 May. Erratum in: PLoS Pathog. 2014 Jun;10(6):e1004247. Faulstich, Manuela [corrected to Faulstich, Michaela].


Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A.

Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY, Feng Q, Yang HJ, Wei ZB, Zeng H, Zou QM.

PLoS One. 2014 Apr 15;9(4):e95338. doi: 10.1371/journal.pone.0095338. eCollection 2014.


Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design.

Brown AF, Leech JM, Rogers TR, McLoughlin RM.

Front Immunol. 2014 Jan 8;4:507. doi: 10.3389/fimmu.2013.00507. Review.


Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus.

Foster TJ, Geoghegan JA, Ganesh VK, Höök M.

Nat Rev Microbiol. 2014 Jan;12(1):49-62. doi: 10.1038/nrmicro3161. Review.

Supplemental Content

Support Center