Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 262


Profile of Eugene V. Koonin.

Gabrielsen P.

Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):793-796. doi: 10.1073/pnas.1621406114. Epub 2017 Jan 23. No abstract available.


CRISPR-Cas9: from Genome Editing to Cancer Research.

Chen S, Sun H, Miao K, Deng CX.

Int J Biol Sci. 2016 Nov 4;12(12):1427-1436. eCollection 2016 Nov 4. Review.


To CRISPR and beyond: the evolution of genome editing in stem cells.

Chen KY, Knoepfler PS.

Regen Med. 2016 Dec;11(8):801-816. Epub 2016 Dec 1.


Guide RNA engineering for versatile Cas9 functionality.

Nowak CM, Lawson S, Zerez M, Bleris L.

Nucleic Acids Res. 2016 Nov 16;44(20):9555-9564. Epub 2016 Oct 12.


Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications.

Shabbir MA, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z.

Front Immunol. 2016 Sep 26;7:375. eCollection 2016 Sep 26. Review.


Visualization analysis of CRISPR/Cas9 gene editing technology studies.

Du QS, Cui J, Zhang CJ, He K.

J Zhejiang Univ Sci B. 2016 Oct.;17(10):798-806.


CRISPR-Cas: biology, mechanisms and relevance.

Hille F, Charpentier E.

Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707). pii: 20150496. doi: 10.1098/rstb.2015.0496. Review.


The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.

Shao M, Xu TR, Chen CS.

Dongwuxue Yanjiu. 2016 Jul 18;37(4):191-204. doi: 10.13918/j.issn.2095-8137.2016.4.191.


Evolutionary Ecology of Prokaryotic Immune Mechanisms.

van Houte S, Buckling A, Westra ER.

Microbiol Mol Biol Rev. 2016 Jul 13;80(3):745-63. doi: 10.1128/MMBR.00011-16. Print 2016 Sep. Review.


A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells.

Waddington SN, Privolizzi R, Karda R, O'Neill HC.

Curr Stem Cell Rep. 2016;2:9-20. Epub 2016 Feb 11. Review.


High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii.

Michoud G, Jebbar M.

Sci Rep. 2016 Jun 2;6:27289. doi: 10.1038/srep27289.


Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow.

Lopatina A, Medvedeva S, Shmakov S, Logacheva MD, Krylenkov V, Severinov K.

Front Microbiol. 2016 Mar 31;7:398. doi: 10.3389/fmicb.2016.00398. eCollection 2016 Mar 31.


A genome editing primer for the hematologist.

Hoban MD, Bauer DE.

Blood. 2016 May 26;127(21):2525-35. doi: 10.1182/blood-2016-01-678151. Epub 2016 Apr 6. Review.


A bacterial Argonaute with noncanonical guide RNA specificity.

Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC, Kranzusch PJ, Doudna JA.

Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4057-62. doi: 10.1073/pnas.1524385113. Epub 2016 Mar 30.


RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

Unniyampurath U, Pilankatta R, Krishnan MN.

Int J Mol Sci. 2016 Feb 26;17(3):291. doi: 10.3390/ijms17030291. Review.


Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein.

Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, Lambowitz AM, Fire AZ.

Science. 2016 Feb 26;351(6276):aad4234. doi: 10.1126/science.aad4234.


The Rise of CRISPR/Cas for Genome Editing in Stem Cells.

Shui B, Hernandez Matias L, Guo Y, Peng Y.

Stem Cells Int. 2016;2016:8140168. doi: 10.1155/2016/8140168. Epub 2016 Jan 6. Review.


Identification of high-efficiency 3'GG gRNA motifs in indexed FASTA files with ngg2.

Roberson ED.

PeerJ Comput Sci. 2015;1. pii: e33. Epub 2015 Nov 18.


Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.

Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP.

Genes Dev. 2016 Feb 15;30(4):447-59. doi: 10.1101/gad.272153.115. Epub 2016 Feb 4.

Supplemental Content

Support Center