Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 68

1.

A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N6-methyladenosine demethylase FTO.

Toh JDW, Sun L, Lau LZM, Tan J, Low JJA, Tang CWQ, Cheong EJY, Tan MJH, Chen Y, Hong W, Gao YG, Woon ECY.

Chem Sci. 2015 Jan 1;6(1):112-122. doi: 10.1039/c4sc02554g. Epub 2014 Sep 22.

2.

ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding.

Walker AR, Silvestrov P, Müller TA, Podolsky RH, Dyson G, Hausinger RP, Cisneros GA.

PLoS Comput Biol. 2017 Feb 23;13(2):e1005345. doi: 10.1371/journal.pcbi.1005345. eCollection 2017 Feb.

3.

Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage.

Li Q, Huang Y, Liu X, Gan J, Chen H, Yang CG.

J Biol Chem. 2016 May 20;291(21):11083-93. doi: 10.1074/jbc.M115.711895. Epub 2016 Mar 25.

4.

Molecular basis for the substrate specificity and catalytic mechanism of thymine-7-hydroxylase in fungi.

Li W, Zhang T, Ding J.

Nucleic Acids Res. 2015 Nov 16;43(20):10026-38. doi: 10.1093/nar/gkv979. Epub 2015 Oct 1.

5.

Efficient and quantitative high-throughput tRNA sequencing.

Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T.

Nat Methods. 2015 Sep;12(9):835-837. doi: 10.1038/nmeth.3478. Epub 2015 Jul 27.

6.

The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond.

Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM.

J Biol Chem. 2015 Aug 21;290(34):20734-42. doi: 10.1074/jbc.R115.656462. Epub 2015 Jul 7. Review.

7.

TET family proteins: oxidation activity, interacting molecules, and functions in diseases.

Lu X, Zhao BS, He C.

Chem Rev. 2015 Mar 25;115(6):2225-39. doi: 10.1021/cr500470n. Epub 2015 Feb 12. Review. No abstract available.

8.

Enzyme dynamics from NMR spectroscopy.

Palmer AG 3rd.

Acc Chem Res. 2015 Feb 17;48(2):457-65. doi: 10.1021/ar500340a. Epub 2015 Jan 9. Review.

9.

Homology modeling, molecular dynamics, and site-directed mutagenesis study of AlkB human homolog 1 (ALKBH1).

Silvestrov P, Müller TA, Clark KN, Hausinger RP, Cisneros GA.

J Mol Graph Model. 2014 Nov;54:123-30. doi: 10.1016/j.jmgm.2014.10.013. Epub 2014 Oct 27.

10.

Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5.

Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, Gan J, Jiang H, Jia GF, Luo C, Yang CG.

Nucleic Acids Res. 2015 Jan;43(1):373-84. doi: 10.1093/nar/gku1276. Epub 2014 Dec 1.

11.

Alternative Pathway for the Reaction Catalyzed by DNA Dealkylase AlkB from Ab Initio QM/MM Calculations.

Fang D, Cisneros GA.

J Chem Theory Comput. 2014 Nov 11;10(11):5136-5148. Epub 2014 Sep 25.

12.

Direct correlation of DNA binding and single protein domain motion via dual illumination fluorescence microscopy.

Ghoneim M, Spies M.

Nano Lett. 2014 Oct 8;14(10):5920-31. doi: 10.1021/nl502890g. Epub 2014 Sep 16.

13.

The atomic resolution structure of human AlkB homolog 7 (ALKBH7), a key protein for programmed necrosis and fat metabolism.

Wang G, He Q, Feng C, Liu Y, Deng Z, Qi X, Wu W, Mei P, Chen Z.

J Biol Chem. 2014 Oct 3;289(40):27924-36. doi: 10.1074/jbc.M114.590505. Epub 2014 Aug 13.

14.

Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB.

Ergel B, Gill ML, Brown L, Yu B, Palmer AG 3rd, Hunt JF.

J Biol Chem. 2014 Oct 24;289(43):29584-601. doi: 10.1074/jbc.M114.575647. Epub 2014 Jul 20.

15.

Protozoan ALKBH8 oxygenases display both DNA repair and tRNA modification activities.

Zdżalik D, Vågbø CB, Kirpekar F, Davydova E, Puścian A, Maciejewska AM, Krokan HE, Klungland A, Tudek B, van den Born E, Falnes PØ.

PLoS One. 2014 Jun 10;9(6):e98729. doi: 10.1371/journal.pone.0098729. eCollection 2014.

16.

Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation.

Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J.

J Biol Chem. 2014 Jun 20;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub 2014 Apr 28.

17.

Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition.

Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z.

J Biol Chem. 2014 Apr 25;289(17):11571-83. doi: 10.1074/jbc.M113.546168. Epub 2014 Mar 10.

18.

Nucleic acid oxidation in DNA damage repair and epigenetics.

Zheng G, Fu Y, He C.

Chem Rev. 2014 Apr 23;114(8):4602-20. doi: 10.1021/cr400432d. Epub 2014 Feb 28. Review. No abstract available.

19.

Crystal structure of the RNA demethylase ALKBH5 from zebrafish.

Chen W, Zhang L, Zheng G, Fu Y, Ji Q, Liu F, Chen H, He C.

FEBS Lett. 2014 Mar 18;588(6):892-8. doi: 10.1016/j.febslet.2014.02.021. Epub 2014 Feb 20.

20.

Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation.

Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA.

Nucleic Acids Res. 2014 Apr;42(7):4741-54. doi: 10.1093/nar/gku085. Epub 2014 Jan 30.

Supplemental Content

Support Center