Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 33

1.

β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis.

Houben A, Kostanova-Poliakova D, Weissenböck M, Graf J, Teufel S, von der Mark K, Hartmann C.

Development. 2016 Oct 15;143(20):3826-3838. Epub 2016 Sep 12.

2.

Signaling pathways regulating cartilage growth plate formation and activity.

Samsa WE, Zhou X, Zhou G.

Semin Cell Dev Biol. 2017 Feb;62:3-15. doi: 10.1016/j.semcdb.2016.07.008. Epub 2016 Jul 11. Review.

PMID:
27418125
3.

FGFR3/fibroblast growth factor receptor 3 inhibits autophagy through decreasing the ATG12-ATG5 conjugate, leading to the delay of cartilage development in achondroplasia.

Wang X, Qi H, Wang Q, Zhu Y, Wang X, Jin M, Tan Q, Huang Q, Xu W, Li X, Kuang L, Tang Y, Du X, Chen D, Chen L.

Autophagy. 2015 Nov 2;11(11):1998-2013.

4.

The Mighty Chondrocyte: No Bones about It.

Purcell P, Trainor PA.

J Dent Res. 2015 Dec;94(12):1625-7. doi: 10.1177/0022034515605457. Epub 2015 Sep 4. No abstract available.

5.

The Transient Chondrocyte Phenotype in Human Osteophytic Cartilage: A Role of Pigment Epithelium-Derived Factor?

Klinger P, Beyer C, Ekici AB, Carl HD, Schett G, Swoboda B, Hennig FF, Gelse K.

Cartilage. 2013 Jul;4(3):249-55. doi: 10.1177/1947603513480809.

6.

Comparative proteomic analysis of hypertrophic chondrocytes in osteoarthritis.

Tsolis KC, Bei ES, Papathanasiou I, Kostopoulou F, Gkretsi V, Kalantzaki K, Malizos K, Zervakis M, Tsezou A, Economou A.

Clin Proteomics. 2015 Apr 25;12(1):12. doi: 10.1186/s12014-015-9085-6. eCollection 2015.

7.

Pubertal growth and epiphyseal fusion.

Shim KS.

Ann Pediatr Endocrinol Metab. 2015 Mar;20(1):8-12. doi: 10.6065/apem.2015.20.1.8. Epub 2015 Mar 31. Review.

8.

Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage.

Park J, Gebhardt M, Golovchenko S, Perez-Branguli F, Hattori T, Hartmann C, Zhou X, deCrombrugghe B, Stock M, Schneider H, von der Mark K.

Biol Open. 2015 Apr 16;4(5):608-21. doi: 10.1242/bio.201411031.

9.

A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation.

Kozhemyakina E, Lassar AB, Zelzer E.

Development. 2015 Mar 1;142(5):817-31. doi: 10.1242/dev.105536. Review.

10.

The multifaceted role of the vasculature in endochondral fracture repair.

Bahney CS, Hu DP, Miclau T 3rd, Marcucio RS.

Front Endocrinol (Lausanne). 2015 Feb 5;6:4. doi: 10.3389/fendo.2015.00004. eCollection 2015. Review.

11.

Hyaluronan synthase-2 upregulation protects smpd3-deficient fibroblasts against cell death induced by nutrient deprivation, but not against apoptosis evoked by oxidized LDL.

Garoby-Salom S, Rouahi M, Mucher E, Auge N, Salvayre R, Negre-Salvayre A.

Redox Biol. 2015;4:118-26. doi: 10.1016/j.redox.2014.12.004. Epub 2014 Dec 16.

12.

Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone.

Ascenzi M, Du X, Harding JI, Beylerian EN, de Silva BM, Gross BJ, Kastein HK, Wang W, Lyons KM, Schaeffer H.

Appl Math (Irvine). 2014 Oct;5(18):2866-2880.

13.

Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B.

PLoS Genet. 2014 Dec 4;10(12):e1004820. doi: 10.1371/journal.pgen.1004820. eCollection 2014 Dec.

14.

Osteogenic fate of hypertrophic chondrocytes.

Yang G, Zhu L, Hou N, Lan Y, Wu XM, Zhou B, Teng Y, Yang X.

Cell Res. 2014 Oct;24(10):1266-9. doi: 10.1038/cr.2014.111. Epub 2014 Aug 22. No abstract available.

15.

Hypertrophic chondrocytes in the rabbit growth plate can proliferate and differentiate into osteogenic cells when capillary invasion is interposed by a membrane filter.

Enishi T, Yukata K, Takahashi M, Sato R, Sairyo K, Yasui N.

PLoS One. 2014 Aug 14;9(8):e104638. doi: 10.1371/journal.pone.0104638. eCollection 2014.

16.

Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.

Yang L, Tsang KY, Tang HC, Chan D, Cheah KS.

Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12097-102. doi: 10.1073/pnas.1302703111. Epub 2014 Aug 4.

17.

Thermal epiphysiodesis performed with radio frequency in a porcine model.

Shiguetomi-Medina JM, Rahbek O, Abood AA, Stødkilde-Jørgensen H, Møller-Madsen B.

Acta Orthop. 2014 Sep;85(5):538-42. doi: 10.3109/17453674.2014.939014. Epub 2014 Jul 18.

18.

TGFβ signaling in cartilage development and maintenance.

Wang W, Rigueur D, Lyons KM.

Birth Defects Res C Embryo Today. 2014 Mar;102(1):37-51. doi: 10.1002/bdrc.21058. Review.

19.

Boning up on autophagy: the role of autophagy in skeletal biology.

Shapiro IM, Layfield R, Lotz M, Settembre C, Whitehouse C.

Autophagy. 2014 Jan;10(1):7-19. doi: 10.4161/auto.26679. Epub 2013 Nov 11. Review.

20.

Notch signaling in skeletal stem cells.

Chen S, Lee BH, Bae Y.

Calcif Tissue Int. 2014 Jan;94(1):68-77. doi: 10.1007/s00223-013-9773-z. Epub 2013 Aug 22. Review.

Supplemental Content

Support Center