Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Analysis of somatic mutations across the kinome reveals loss-of-function mutations in multiple cancer types.

Kumar RD, Bose R.

Sci Rep. 2017 Jul 25;7(1):6418. doi: 10.1038/s41598-017-06366-x.

2.

FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors.

Nguyen B, Williams AB, Young DJ, Ma H, Li L, Levis M, Brown P, Small D.

Oncotarget. 2017 Feb 14;8(7):10931-10944. doi: 10.18632/oncotarget.14539.

3.

SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML.

Ma S, Yang LL, Niu T, Cheng C, Zhong L, Zheng MW, Xiong Y, Li LL, Xiang R, Chen LJ, Zhou Q, Wei YQ, Yang SY.

Sci Rep. 2015 Oct 26;5:15646. doi: 10.1038/srep15646.

4.

Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin.

McDonell LM, Kernohan KD, Boycott KM, Sawyer SL.

Hum Mol Genet. 2015 Oct 15;24(R1):R60-6. doi: 10.1093/hmg/ddv254. Epub 2015 Jul 7. Review.

5.

An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment.

Grafone T, Palmisano M, Nicci C, Storti S.

Oncol Rev. 2012 Apr 17;6(1):e8. doi: 10.4081/oncol.2012.e8. eCollection 2012 Mar 5. Review.

6.

Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia.

Janke H, Pastore F, Schumacher D, Herold T, Hopfner KP, Schneider S, Berdel WE, Büchner T, Woermann BJ, Subklewe M, Bohlander SK, Hiddemann W, Spiekermann K, Polzer H.

PLoS One. 2014 Mar 7;9(3):e89560. doi: 10.1371/journal.pone.0089560. eCollection 2014.

7.

The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias.

Testa U, Pelosi E.

Leuk Res Treatment. 2013;2013:275760. doi: 10.1155/2013/275760. Epub 2013 Jul 9.

8.

Inhibition of FLT3 expression by green tea catechins in FLT3 mutated-AML cells.

Ly BT, Chi HT, Yamagishi M, Kano Y, Hara Y, Nakano K, Sato Y, Watanabe T.

PLoS One. 2013 Jun 20;8(6):e66378. doi: 10.1371/journal.pone.0066378. Print 2013.

9.

FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations.

Kayser S, Levis MJ.

Leuk Lymphoma. 2014 Feb;55(2):243-55. doi: 10.3109/10428194.2013.800198. Epub 2013 Jun 5. Review.

10.

Myeloid neoplasias: what molecular analyses are telling us.

Gutiyama LM, Coutinho DF, Lipkin MV, Zalcberg IR.

ISRN Oncol. 2012;2012:321246. doi: 10.5402/2012/321246. Epub 2012 Sep 27.

11.

Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells.

Weisberg E, Ray A, Nelson E, Adamia S, Barrett R, Sattler M, Zhang C, Daley JF, Frank D, Fox E, Griffin JD.

PLoS One. 2011;6(9):e25351. doi: 10.1371/journal.pone.0025351. Epub 2011 Sep 28.

12.

Emerging FMS-like tyrosine kinase 3 inhibitors for the treatment of acute myelogenous leukemia.

Prescott H, Kantarjian H, Cortes J, Ravandi F.

Expert Opin Emerg Drugs. 2011 Sep;16(3):407-23. doi: 10.1517/14728214.2011.568938. Epub 2011 Mar 22. Review.

13.

FLT3 inhibitors in the treatment of acute myeloid leukemia: the start of an era?

Pemmaraju N, Kantarjian H, Ravandi F, Cortes J.

Cancer. 2011 Aug 1;117(15):3293-304. doi: 10.1002/cncr.25908. Epub 2011 Feb 11. Review.

14.

The gene encoding the hematopoietic stem cell regulator CCN3/NOV is under direct cytokine control through the transcription factors STAT5A/B.

Kimura A, Martin C, Robinson GW, Simone JM, Chen W, Wickre MC, O'Shea JJ, Hennighausen L.

J Biol Chem. 2010 Oct 22;285(43):32704-9. doi: 10.1074/jbc.M110.141804. Epub 2010 Aug 18.

15.

Phase I/II study of combination therapy with sorafenib, idarubicin, and cytarabine in younger patients with acute myeloid leukemia.

Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, O'Brien S, Estrov Z, Borthakur G, Thomas D, Pierce SR, Brandt M, Byrd A, Bekele BN, Pratz K, Luthra R, Levis M, Andreeff M, Kantarjian HM.

J Clin Oncol. 2010 Apr 10;28(11):1856-62. doi: 10.1200/JCO.2009.25.4888. Epub 2010 Mar 8.

16.

Genetic tests to evaluate prognosis and predict therapeutic response in acute myeloid leukemia.

Gulley ML, Shea TC, Fedoriw Y.

J Mol Diagn. 2010 Jan;12(1):3-16. doi: 10.2353/jmoldx.2010.090054. Epub 2009 Dec 3. Review.

17.

The transcription factors STAT5A/B regulate GM-CSF-mediated granulopoiesis.

Kimura A, Rieger MA, Simone JM, Chen W, Wickre MC, Zhu BM, Hoppe PS, O'Shea JJ, Schroeder T, Hennighausen L.

Blood. 2009 Nov 19;114(21):4721-8. doi: 10.1182/blood-2009-04-216390. Epub 2009 Sep 24.

18.

Structural and functional alterations of FLT3 in acute myeloid leukemia.

Meshinchi S, Appelbaum FR.

Clin Cancer Res. 2009 Jul 1;15(13):4263-9. doi: 10.1158/1078-0432.CCR-08-1123. Epub 2009 Jun 23. Review.

19.

Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias.

Ma W, Kantarjian H, Zhang X, Yeh CH, Zhang ZJ, Verstovsek S, Albitar M.

J Mol Diagn. 2009 Jan;11(1):49-53. doi: 10.2353/jmoldx.2009.080114. Epub 2008 Dec 12.

20.

Detection of NPM1 exon 12 mutations and FLT3 - internal tandem duplications by high resolution melting analysis in normal karyotype acute myeloid leukemia.

Tan AY, Westerman DA, Carney DA, Seymour JF, Juneja S, Dobrovic A.

J Hematol Oncol. 2008 Jul 29;1:10. doi: 10.1186/1756-8722-1-10.

Supplemental Content

Support Center