Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 64

1.

Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function.

Gai K, Cao X, Dong Q, Ding Z, Wei Y, Liu Y, Liu X, He Q.

PLoS Genet. 2017 Apr 12;13(4):e1006732. doi: 10.1371/journal.pgen.1006732. eCollection 2017 Apr.

2.

A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

Zhang Y, Navarro E, Cánovas-Márquez JT, Almagro L, Chen H, Chen YQ, Zhang H, Torres-Martínez S, Chen W, Garre V.

Microb Cell Fact. 2016 Jun 7;15:99. doi: 10.1186/s12934-016-0493-8.

3.

Suppression of WHITE COLLAR-independent frequency Transcription by Histone H3 Lysine 36 Methyltransferase SET-2 Is Necessary for Clock Function in Neurospora.

Sun G, Zhou Z, Liu X, Gai K, Liu Q, Cha J, Kaleri FN, Wang Y, He Q.

J Biol Chem. 2016 May 20;291(21):11055-63. doi: 10.1074/jbc.M115.711333. Epub 2016 Mar 21.

4.

Alternative Use of DNA Binding Domains by the Neurospora White Collar Complex Dictates Circadian Regulation and Light Responses.

Wang B, Zhou X, Loros JJ, Dunlap JC.

Mol Cell Biol. 2015 Dec 28;36(5):781-93. doi: 10.1128/MCB.00841-15.

5.

White collar 1-induced photolyase expression contributes to UV-tolerance of Ustilago maydis.

Brych A, Mascarenhas J, Jaeger E, Charkiewicz E, Pokorny R, Bölker M, Doehlemann G, Batschauer A.

Microbiologyopen. 2016 Apr;5(2):224-43. doi: 10.1002/mbo3.322. Epub 2015 Dec 20.

6.

Seeing the world differently: variability in the photosensory mechanisms of two model fungi.

Dasgupta A, Fuller KK, Dunlap JC, Loros JJ.

Environ Microbiol. 2016 Jan;18(1):5-20. doi: 10.1111/1462-2920.13055. Epub 2015 Oct 26. Review.

7.

Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa.

Proietto M, Bianchi MM, Ballario P, Brenna A.

Int J Mol Sci. 2015 Jul 7;16(7):15347-83. doi: 10.3390/ijms160715347. Review.

8.

Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora.

Sancar C, Ha N, Yilmaz R, Tesorero R, Fisher T, Brunner M, Sancar G.

PLoS Genet. 2015 Mar 30;11(3):e1005105. doi: 10.1371/journal.pgen.1005105. eCollection 2015 Mar.

9.

The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium fujikuroi.

Castrillo M, Avalos J.

PLoS One. 2015 Mar 16;10(3):e0119785. doi: 10.1371/journal.pone.0119785. eCollection 2015.

10.

Methods to study molecular mechanisms of the Neurospora circadian clock.

Cha J, Zhou M, Liu Y.

Methods Enzymol. 2015;551:137-51. doi: 10.1016/bs.mie.2014.10.002. Epub 2014 Dec 26.

11.

Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view.

Cha J, Zhou M, Liu Y.

Biochemistry. 2015 Jan 20;54(2):150-6. doi: 10.1021/bi5005624. Epub 2014 Dec 30. Review.

12.

Transcriptional interference by antisense RNA is required for circadian clock function.

Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y.

Nature. 2014 Oct 30;514(7524):650-3. doi: 10.1038/nature13671. Epub 2014 Aug 17.

13.

Genome-wide characterization of light-regulated genes in Neurospora crassa.

Wu C, Yang F, Smith KM, Peterson M, Dekhang R, Zhang Y, Zucker J, Bredeweg EL, Mallappa C, Zhou X, Lyubetskaya A, Townsend JP, Galagan JE, Freitag M, Dunlap JC, Bell-Pedersen D, Sachs MS.

G3 (Bethesda). 2014 Jul 21;4(9):1731-45. doi: 10.1534/g3.114.012617.

14.

Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.

Kim JK, Kilpatrick ZP, Bennett MR, Josić K.

Biophys J. 2014 May 6;106(9):2071-81. doi: 10.1016/j.bpj.2014.02.039.

15.

Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

Ruger-Herreros C, Gil-Sánchez Mdel M, Sancar G, Brunner M, Corrochano LM.

PLoS One. 2014 Apr 18;9(4):e95069. doi: 10.1371/journal.pone.0095069. eCollection 2014.

16.

Light-dependent and circadian transcription dynamics in vivo recorded with a destabilized luciferase reporter in Neurospora.

Cesbron F, Brunner M, Diernfellner AC.

PLoS One. 2013 Dec 31;8(12):e83660. doi: 10.1371/journal.pone.0083660. eCollection 2013.

17.

Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock.

Zhou Z, Liu X, Hu Q, Zhang N, Sun G, Cha J, Wang Y, Liu Y, He Q.

Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4867-74. doi: 10.1073/pnas.1315133110. Epub 2013 Nov 25.

18.

The Ccr4-not protein complex regulates the phase of the Neurospora circadian clock by controlling white collar protein stability and activity.

Huang G, He Q, Guo J, Cha J, Liu Y.

J Biol Chem. 2013 Oct 25;288(43):31002-9. doi: 10.1074/jbc.M113.494120. Epub 2013 Sep 12.

19.

CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus.

Cha J, Zhou M, Liu Y.

EMBO Rep. 2013 Oct;14(10):923-30. doi: 10.1038/embor.2013.131. Epub 2013 Aug 20. Erratum in: EMBO Rep. 2014 Oct;15(10):1102.

20.

The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation.

Gin E, Diernfellner AC, Brunner M, Höfer T.

Mol Syst Biol. 2013 May 28;9:667. doi: 10.1038/msb.2013.24.

Supplemental Content

Support Center