Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia.

Wang Y, Skibbe JR, Hu C, Dong L, Ferchen K, Su R, Li C, Huang H, Weng H, Huang H, Qin X, Jin J, Chen J, Jiang X.

Sci Rep. 2017 May 12;7(1):1853. doi: 10.1038/s41598-017-01913-y.

2.

Expression of GADS enhances FLT3-induced mitogenic signaling.

Chougule RA, Cordero E, Moharram SA, Pietras K, Rönnstrand L, Kazi JU.

Oncotarget. 2016 Mar 22;7(12):14112-24. doi: 10.18632/oncotarget.7415.

3.

TALENs-mediated gene disruption of FLT3 in leukemia cells: Using genome-editing approach for exploring the molecular basis of gene abnormality.

Wang J, Li T, Zhou M, Hu Z, Zhou X, Zhou S, Wang N, Huang L, Zhao L, Cao Y, Xiao M, Ma D, Zhou P, Shang Z, Zhou J.

Sci Rep. 2015 Dec 16;5:18454. doi: 10.1038/srep18454.

4.

Class III Receptor Tyrosine Kinases in Acute Leukemia - Biological Functions and Modern Laboratory Analysis.

Berenstein R.

Biomark Insights. 2015 Aug 5;10(Suppl 3):1-14. doi: 10.4137/BMI.S22433. eCollection 2015. Review.

5.

The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy.

Gocek E, Studzinski GP.

J Clin Med. 2015 Mar 25;4(4):504-34. doi: 10.3390/jcm4040504. Review.

6.

Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation.

Fouladi F, Jehn LB, Metzelder SK, Hub F, Henkenius K, Burchert A, Brendel C, Stiewe T, Neubauer A.

Leuk Lymphoma. 2015;56(9):2690-8. doi: 10.3109/10428194.2014.1003055. Epub 2015 Mar 3.

7.

Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

Chatterjee A, Ghosh J, Ramdas B, Mali RS, Martin H, Kobayashi M, Vemula S, Canela VH, Waskow ER, Visconte V, Tiu RV, Smith CC, Shah N, Bunting KD, Boswell HS, Liu Y, Chan RJ, Kapur R.

Cell Rep. 2014 Nov 20;9(4):1333-48. doi: 10.1016/j.celrep.2014.10.039. Epub 2014 Nov 13.

8.

Calcium and calcineurin-NFAT signaling regulate granulocyte-monocyte progenitor cell cycle via Flt3-L.

Fric J, Lim CX, Mertes A, Lee BT, Viganò E, Chen J, Zolezzi F, Poidinger M, Larbi A, Strobl H, Zelante T, Ricciardi-Castagnoli P.

Stem Cells. 2014 Dec;32(12):3232-44. doi: 10.1002/stem.1813.

9.

Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

Thomas R, Hubbard AE, McHale CM, Zhang L, Rappaport SM, Lan Q, Rothman N, Vermeulen R, Guyton KZ, Jinot J, Sonawane BR, Smith MT.

PLoS One. 2014 May 1;9(5):e91828. doi: 10.1371/journal.pone.0091828. eCollection 2014.

10.

Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia.

Janke H, Pastore F, Schumacher D, Herold T, Hopfner KP, Schneider S, Berdel WE, Büchner T, Woermann BJ, Subklewe M, Bohlander SK, Hiddemann W, Spiekermann K, Polzer H.

PLoS One. 2014 Mar 7;9(3):e89560. doi: 10.1371/journal.pone.0089560. eCollection 2014.

11.
12.

A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling.

Caldarelli A, Müller JP, Paskowski-Rogacz M, Herrmann K, Bauer R, Koch S, Heninger AK, Krastev D, Ding L, Kasper S, Fischer T, Brodhun M, Böhmer FD, Buchholz F.

Leukemia. 2013 Dec;27(12):2301-10. doi: 10.1038/leu.2013.83. Epub 2013 Mar 19.

13.

Functional pathway analysis using SCNP of FLT3 receptor pathway deregulation in AML provides prognostic information independent from mutational status.

Cesano A, Putta S, Rosen DB, Cohen AC, Gayko U, Mathi K, Woronicz J, Hawtin RE, Cripe L, Sun Z, Tallman MS, Paietta E.

PLoS One. 2013;8(2):e56714. doi: 10.1371/journal.pone.0056714. Epub 2013 Feb 19.

14.

The protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo.

Nabinger SC, Li XJ, Ramdas B, He Y, Zhang X, Zeng L, Richine B, Bowling JD, Fukuda S, Goenka S, Liu Z, Feng GS, Yu M, Sandusky GE, Boswell HS, Zhang ZY, Kapur R, Chan RJ.

Leukemia. 2013 Feb;27(2):398-408. doi: 10.1038/leu.2012.308. Epub 2012 Oct 22.

15.

H2O2 production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling.

Woolley JF, Naughton R, Stanicka J, Gough DR, Bhatt L, Dickinson BC, Chang CJ, Cotter TG.

PLoS One. 2012;7(7):e34050. doi: 10.1371/journal.pone.0034050. Epub 2012 Jul 13.

16.

Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression.

Arora D, Köthe S, van den Eijnden M, Hooft van Huijsduijnen R, Heidel F, Fischer T, Scholl S, Tölle B, Böhmer SA, Lennartsson J, Isken F, Müller-Tidow C, Böhmer FD.

Cell Commun Signal. 2012 Jul 11;10(1):19. doi: 10.1186/1478-811X-10-19.

17.

Phosphorylation of serine 21 modulates the proliferation inhibitory more than the differentiation inducing effects of C/EBPα in K562 cells.

Fragliasso V, Chiodo Y, Ferrari-Amorotti G, Soliera AR, Manzotti G, Cattelani S, Candini O, Grisendi G, Vergalli J, Mariani SA, Guerzoni C, Calabretta B.

J Cell Biochem. 2012 May;113(5):1704-13. doi: 10.1002/jcb.24040.

18.

Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice.

Li L, Bailey E, Greenblatt S, Huso D, Small D.

Blood. 2011 Nov 3;118(18):4935-45. doi: 10.1182/blood-2011-01-328096. Epub 2011 Sep 8.

19.

Survey of activated FLT3 signaling in leukemia.

Gu TL, Nardone J, Wang Y, Loriaux M, Villén J, Beausoleil S, Tucker M, Kornhauser J, Ren J, MacNeill J, Gygi SP, Druker BJ, Heinrich MC, Rush J, Polakiewicz RD.

PLoS One. 2011 Apr 28;6(4):e19169. doi: 10.1371/journal.pone.0019169.

20.

FLT3 mutations in canine acute lymphocytic leukemia.

Suter SE, Small GW, Seiser EL, Thomas R, Breen M, Richards KL.

BMC Cancer. 2011 Jan 27;11:38. doi: 10.1186/1471-2407-11-38.

Supplemental Content

Support Center