Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 221

1.

The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification.

Jin W, Peng J, Jiang S.

Biochem Biophys Rep. 2016 Apr 20;6:209-219. doi: 10.1016/j.bbrep.2016.04.009. eCollection 2016 Jul. Review.

2.

MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation.

Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ, Caporossi D.

Sci Rep. 2017 Aug 3;7(1):7219. doi: 10.1038/s41598-017-07575-0.

3.

The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.

Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, Urata M, Hudnall AM, Hitomi S, Nakatomi M, Sato T, Osawa K, Yoda T, Rosen V, Jimi E.

J Biol Chem. 2017 Aug 4;292(31):12885-12894. doi: 10.1074/jbc.M116.774570. Epub 2017 Jun 12.

PMID:
28607151
4.

Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9.

Higashioka K, Koizumi N, Sakurai H, Sotozono C, Sato T.

Stem Cells Int. 2017;2017:9210494. doi: 10.1155/2017/9210494. Epub 2017 Apr 4.

5.

Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis.

Zhou C, Li C, Zhou B, Sun H, Koullourou V, Holt I, Puckelwartz MJ, Warren DT, Hayward R, Lin Z, Zhang L, Morris GE, McNally EM, Shackleton S, Rao L, Shanahan CM, Zhang Q.

Hum Mol Genet. 2017 Jun 15;26(12):2258-2276. doi: 10.1093/hmg/ddx116.

6.

Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c.

Luo D, de Morree A, Boutet S, Quach N, Natu V, Rustagi A, Rando TA.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3071-E3080. doi: 10.1073/pnas.1613592114. Epub 2017 Mar 28.

7.

The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis.

Schüttler A, Reiche K, Altenburger R, Busch W.

Toxicol Sci. 2017 Jun 1;157(2):291-304. doi: 10.1093/toxsci/kfx045.

8.

Ten-Eleven Translocation-2 (Tet2) Is Involved in Myogenic Differentiation of Skeletal Myoblast Cells in Vitro.

Zhong X, Wang QQ, Li JW, Zhang YM, An XR, Hou J.

Sci Rep. 2017 Mar 8;7:43539. doi: 10.1038/srep43539.

9.

Palmdelphin promotes myoblast differentiation and muscle regeneration.

Nie Y, Chen H, Guo C, Yuan Z, Zhou X, Zhang Y, Zhang X, Mo D, Chen Y.

Sci Rep. 2017 Feb 2;7:41608. doi: 10.1038/srep41608.

10.

Sex-Specific Muscular Maturation Responses Following Prenatal Exposure to Methylation-Related Micronutrients in Pigs.

Oster M, Trakooljul N, Reyer H, Zeyner A, Muráni E, Ponsuksili S, Wimmers K.

Nutrients. 2017 Jan 18;9(1). pii: E74. doi: 10.3390/nu9010074.

11.

Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD.

Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, Zhao Y, Zhai L, Zhong R, Li C, Zou X, Meng J, Chen AK, Puri PL, Chen M, Zhu D.

Nat Commun. 2017 Jan 16;8:14016. doi: 10.1038/ncomms14016.

12.

Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro.

Soto SM, Blake AC, Wesolowski SR, Rozance PJ, Barthel KB, Gao B, Hetrick B, McCurdy CE, Garza NG, Hay WW Jr, Leinwand LA, Friedman JE, Brown LD.

J Endocrinol. 2017 Mar;232(3):475-491. doi: 10.1530/JOE-16-0123. Epub 2017 Jan 4.

PMID:
28053000
13.

Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis.

Newman P, Galenano-Niño JL, Graney P, Razal JM, Minett AI, Ribas J, Ovalle-Robles R, Biro M, Zreiqat H.

Sci Rep. 2016 Dec 2;6:37909. doi: 10.1038/srep37909.

14.

Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells.

Kim SW, Lee JH, Park BC, Park TS.

Asian-Australas J Anim Sci. 2017 Jul;30(7):1029-1036. doi: 10.5713/ajas.16.0749. Epub 2016 Oct 28.

15.

From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease.

Zhang Y, Yu B, He J, Chen D.

Int J Biol Sci. 2016 Oct 17;12(10):1247-1261. eCollection 2016. Review.

16.

PKN2 and Cdo interact to activate AKT and promote myoblast differentiation.

Lee SJ, Hwang J, Jeong HJ, Yoo M, Go GY, Lee JR, Leem YE, Park JW, Seo DW, Kim YK, Hahn MJ, Han JW, Kang JS, Bae GU.

Cell Death Dis. 2016 Oct 20;7(10):e2431. doi: 10.1038/cddis.2016.296.

17.

Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis.

Kikani CK, Wu X, Paul L, Sabic H, Shen Z, Shakya A, Keefe A, Villanueva C, Kardon G, Graves B, Tantin D, Rutter J.

Elife. 2016 Sep 23;5. pii: e17985. doi: 10.7554/eLife.17985.

18.

miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development.

Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y, Lin F, Zhao X, Chen H.

RNA Biol. 2016 Dec;13(12):1300-1309. Epub 2016 Sep 23.

19.

Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease.

Kim EY, Page P, Dellefave-Castillo LM, McNally EM, Wyatt EJ.

Skelet Muscle. 2016 Sep 15;6:32. doi: 10.1186/s13395-016-0103-9. eCollection 2016.

20.

A cross-talk between DNA methylation and H3 lysine 9 dimethylation at the KvDMR1 region controls the induction of Cdkn1c in muscle cells.

Andresini O, Ciotti A, Rossi MN, Battistelli C, Carbone M, Maione R.

Epigenetics. 2016 Nov;11(11):791-803. Epub 2016 Sep 9.

Supplemental Content

Support Center