Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.

Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, Morris CE, Vinatzer BA, Sheppard SK.

Microb Genom. 2016 Oct 21;2(10):e000089. doi: 10.1099/mgen.0.000089. eCollection 2016 Oct.

2.

Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules.

Bardaji L, Añorga M, Ruiz-Masó JA, Del Solar G, Murillo J.

Front Microbiol. 2017 Feb 13;8:190. doi: 10.3389/fmicb.2017.00190. eCollection 2017.

3.

The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones.

Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H.

PLoS One. 2016 Nov 18;11(11):e0167002. doi: 10.1371/journal.pone.0167002. eCollection 2016.

4.

Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases.

Shindo T, Kaschani F, Yang F, Kovács J, Tian F, Kourelis J, Hong TN, Colby T, Shabab M, Chawla R, Kumari S, Ilyas M, Hörger AC, Alfano JR, van der Hoorn RA.

PLoS Pathog. 2016 Sep 7;12(9):e1005874. doi: 10.1371/journal.ppat.1005874. eCollection 2016 Sep.

5.

A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.

Thakur S, Guttman DS.

BMC Bioinformatics. 2016 Jun 30;17(1):260. doi: 10.1186/s12859-016-1142-2.

6.

The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions.

Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L.

Front Microbiol. 2016 May 30;7:805. doi: 10.3389/fmicb.2016.00805. eCollection 2016.

7.

Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae.

Nowell RW, Laue BE, Sharp PM, Green S.

Mol Plant Pathol. 2016 Dec;17(9):1409-1424. doi: 10.1111/mpp.12423. Epub 2016 Jul 15.

8.

Characterization of salA, syrF, and syrG Genes and Attendant Regulatory Networks Involved in Plant Pathogenesis by Pseudomonas syringae pv. syringae B728a.

Vaughn VL, Gross DC.

PLoS One. 2016 Mar 8;11(3):e0150234. doi: 10.1371/journal.pone.0150234. eCollection 2016.

9.

Draft Genome Sequence of Pseudomonas syringae pv. syringae ALF3 Isolated from Alfalfa.

Harrison J, Dornbusch MR, Samac D, Studholme DJ.

Genome Announc. 2016 Feb 11;4(1). pii: e01722-15. doi: 10.1128/genomeA.01722-15.

10.

Gene Expression Profiling in Viable but Nonculturable (VBNC) Cells of Pseudomonas syringae pv. syringae.

Postnikova OA, Shao J, Mock NM, Baker CJ, Nemchinov LG.

Front Microbiol. 2015 Dec 18;6:1419. doi: 10.3389/fmicb.2015.01419. eCollection 2015.

11.

Bacteriocins from the rhizosphere microbiome - from an agriculture perspective.

Subramanian S, Smith DL.

Front Plant Sci. 2015 Oct 30;6:909. doi: 10.3389/fpls.2015.00909. eCollection 2015. Review.

12.

Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

Feng K, Li R, Chen Y, Zhao B, Yin T.

PLoS One. 2015 Oct 30;10(10):e0141515. doi: 10.1371/journal.pone.0141515. eCollection 2015.

13.

Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

Li AD, Li LG, Zhang T.

Front Microbiol. 2015 Sep 24;6:1025. doi: 10.3389/fmicb.2015.01025. eCollection 2015.

14.

Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle.

Martínez-García PM, Rodríguez-Palenzuela P, Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Ramos C, Cazorla FM, de Vicente A.

PLoS One. 2015 Aug 27;10(8):e0136101. doi: 10.1371/journal.pone.0136101. eCollection 2015.

15.

Independent Co-Option of a Tailed Bacteriophage into a Killing Complex in Pseudomonas.

Hockett KL, Renner T, Baltrus DA.

MBio. 2015 Aug 11;6(4):e00452. doi: 10.1128/mBio.00452-15.

16.

Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects.

Hall JP, Harrison E, Lilley AK, Paterson S, Spiers AJ, Brockhurst MA.

Environ Microbiol. 2015 Dec;17(12):5008-22. doi: 10.1111/1462-2920.12901. Epub 2015 Jun 25.

17.

Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis.

Ravindran A, Jalan N, Yuan JS, Wang N, Gross DC.

Microbiologyopen. 2015 Aug;4(4):553-73. doi: 10.1002/mbo3.261. Epub 2015 May 4.

18.

Draft Genome Sequence of Pseudomonas abietaniphila KF717 (NBRC 110669), Isolated from Biphenyl-Contaminated Soil in Japan.

Kimura N, Yamazoe A, Hosoyama A, Hirose J, Watanabe T, Suenaga H, Fujihara H, Futagami T, Goto M, Furukawa K.

Genome Announc. 2015 Mar 19;3(2). pii: e00059-15. doi: 10.1128/genomeA.00059-15.

19.
20.

Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae.

Patel HK, Matiuzzo M, Bertani I, Bigirimana Vde P, Ash GJ, Höfte M, Venturi V.

BMC Microbiol. 2014 Nov 14;14:274. doi: 10.1186/s12866-014-0274-7.

Supplemental Content

Support Center