Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 24

1.

Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design.

Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW.

Front Neurosci. 2017 Feb 14;11:73. doi: 10.3389/fnins.2017.00073. Review.

2.
3.

Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity.

Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC.

J Am Chem Soc. 2015 Dec 30;137(51):16144-52. doi: 10.1021/jacs.5b10595.

4.
5.

Designed supramolecular filamentous peptides: balance of nanostructure, cytotoxicity and antimicrobial activity.

Xu D, Jiang L, Singh A, Dustin D, Yang M, Liu L, Lund R, Sellati TJ, Dong H.

Chem Commun (Camb). 2015 Jan 25;51(7):1289-92. doi: 10.1039/c4cc08808e.

6.

Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-Barrels and Arcs.

Lipkin RB, Lazaridis T.

J Membr Biol. 2015 Jun;248(3):469-86. doi: 10.1007/s00232-014-9759-4.

8.

Synthetic molecular evolution of pore-forming peptides by iterative combinatorial library screening.

Krauson AJ, He J, Wimley AW, Hoffmann AR, Wimley WC.

ACS Chem Biol. 2013 Apr 19;8(4):823-31. doi: 10.1021/cb300598k.

9.

Gain-of-function analogues of the pore-forming peptide melittin selected by orthogonal high-throughput screening.

Krauson AJ, He J, Wimley WC.

J Am Chem Soc. 2012 Aug 1;134(30):12732-41. doi: 10.1021/ja3042004.

10.

A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056.

Scorciapino MA, Pirri G, Vargiu AV, Ruggerone P, Giuliani A, Casu M, Buerck J, Wadhwani P, Ulrich AS, Rinaldi AC.

Biophys J. 2012 Mar 7;102(5):1039-48. doi: 10.1016/j.bpj.2012.01.048.

11.
12.

High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation.

He L, Hoffmann AR, Serrano C, Hristova K, Wimley WC.

J Mol Biol. 2011 Sep 9;412(1):43-54. doi: 10.1016/j.jmb.2011.07.004.

13.

Spontaneous membrane-translocating peptides by orthogonal high-throughput screening.

Marks JR, Placone J, Hristova K, Wimley WC.

J Am Chem Soc. 2011 Jun 15;133(23):8995-9004. doi: 10.1021/ja2017416.

14.

Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution.

Ueno S, Minaba M, Nishiuchi Y, Taichi M, Tamada Y, Yamazaki T, Kato Y.

Ann Clin Microbiol Antimicrob. 2011 Mar 22;10:11. doi: 10.1186/1476-0711-10-11.

15.

Describing the mechanism of antimicrobial peptide action with the interfacial activity model.

Wimley WC.

ACS Chem Biol. 2010 Oct 15;5(10):905-17. doi: 10.1021/cb1001558. Review.

16.

High-throughput discovery of broad-spectrum peptide antibiotics.

Rathinakumar R, Wimley WC.

FASEB J. 2010 Sep;24(9):3232-8. doi: 10.1096/fj.10-157040.

17.

Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity.

Rathinakumar R, Walkenhorst WF, Wimley WC.

J Am Chem Soc. 2009 Jun 10;131(22):7609-17. doi: 10.1021/ja8093247.

18.

Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization.

Walkenhorst WF, Merzlyakov M, Hristova K, Wimley WC.

Biochim Biophys Acta. 2009 Jun;1788(6):1321-31. doi: 10.1016/j.bbamem.2009.02.017.

19.

Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy.

Chang WK, Wimley WC, Searson PC, Hristova K, Merzlyakov M.

Biochim Biophys Acta. 2008 Oct;1778(10):2430-6. doi: 10.1016/j.bbamem.2008.06.016.

20.

Supplemental Content

Support Center