Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 38


Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chédin S, Gillet R, Contesse MA, Friocourt G, Stahl G, Jones GW, Voisset C.

Sci Rep. 2016 Sep 16;6:32117. doi: 10.1038/srep32117.


Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation.

Arosio P, Michaels TC, Linse S, Månsson C, Emanuelsson C, Presto J, Johansson J, Vendruscolo M, Dobson CM, Knowles TP.

Nat Commun. 2016 Mar 24;7:10948. doi: 10.1038/ncomms10948.


Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.

Reidy M, Sharma R, Shastry S, Roberts BL, Albino-Flores I, Wickner S, Masison DC.

PLoS Genet. 2014 Oct 16;10(10):e1004720. doi: 10.1371/journal.pgen.1004720. eCollection 2014 Oct.


Structural variants of yeast prions show conformer-specific requirements for chaperone activity.

Stein KC, True HL.

Mol Microbiol. 2014 Sep;93(6):1156-71. doi: 10.1111/mmi.12725. Epub 2014 Aug 21.


Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity.

Hasin N, Cusack SA, Ali SS, Fitzpatrick DA, Jones GW.

BMC Genomics. 2014 Mar 14;15:194. doi: 10.1186/1471-2164-15-194.


Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo.

Moran C, Kinsella GK, Zhang ZR, Perrett S, Jones GW.

G3 (Bethesda). 2013 Aug 7;3(8):1409-18. doi: 10.1534/g3.113.007112.


Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2.

Xu LQ, Wu S, Buell AK, Cohen SI, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TP, Dobson CM, Welland ME, Jones GW, Perrett S.

Philos Trans R Soc Lond B Biol Sci. 2013 Mar 25;368(1617):20110410. doi: 10.1098/rstb.2011.0410. Print 2013 May 5.


Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation.

Xu L, Hasin N, Shen M, He J, Xue Y, Zhou X, Perrett S, Song Y, Jones GW.

PLoS Comput Biol. 2013;9(1):e1002896. doi: 10.1371/journal.pcbi.1002896. Epub 2013 Jan 31.


Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates.

Tyedmers J.

Prion. 2012 Jul 1;6(3):191-200. doi: 10.4161/pri.18986. Epub 2012 Jul 1. Review.


Assessment of inactivating stop codon mutations in forty Saccharomyces cerevisiae strains: implications for [PSI] prion- mediated phenotypes.

Fitzpatrick DA, O'Brien J, Moran C, Hasin N, Kenny E, Cormican P, Gates A, Morris DW, Jones GW.

PLoS One. 2011;6(12):e28684. doi: 10.1371/journal.pone.0028684. Epub 2011 Dec 15.


SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1.

Radchenko E, Rogoza T, Khokhrina M, Drozdova P, Mironova L.

Prion. 2011 Oct-Dec;5(4):317-22. doi: 10.4161/pri.18426. Epub 2011 Oct 1.


Potential roles for prions and protein-only inheritance in cancer.

Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL.

Cancer Metastasis Rev. 2012 Jun;31(1-2):1-19. doi: 10.1007/s10555-011-9325-9. Review.


Are prions part of the dark matter of the cell?

Baudin-Baillieu A, Fabret C, Namy O.

Prion. 2011 Oct-Dec;5(4):299-304. doi: 10.4161/pri.18316. Epub 2011 Oct 1. Review.


Qualitative and quantitative multiplexed proteomic analysis of complex yeast protein fractions that modulate the assembly of the yeast prion Sup35p.

Redeker V, Hughes C, Savistchenko J, Vissers JP, Melki R.

PLoS One. 2011;6(9):e23659. doi: 10.1371/journal.pone.0023659. Epub 2011 Sep 13.


The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity.

Hines JK, Craig EA.

Prion. 2011 Jul-Sep;5(3):164-8. doi: 10.4161/pri.5.3.16895. Epub 2011 Jul 1.


Strain conformation, primary structure and the propagation of the yeast prion [PSI+].

Verges KJ, Smith MH, Toyama BH, Weissman JS.

Nat Struct Mol Biol. 2011 Apr;18(4):493-9. doi: 10.1038/nsmb.2030. Epub 2011 Mar 20.


[SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity.

Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA.

PLoS Genet. 2011 Feb;7(2):e1001309. doi: 10.1371/journal.pgen.1001309. Epub 2011 Feb 17. Erratum in: PLoS Genet. 2011 Feb;7(2). doi: 10.1371/annotation/65a80750-95f9-40a1-a509-64ee5febbaa3.


Use of yeast as a system to study amyloid toxicity.

Summers DW, Cyr DM.

Methods. 2011 Mar;53(3):226-31. doi: 10.1016/j.ymeth.2010.11.007. Epub 2010 Nov 27.


The prion hypothesis: from biological anomaly to basic regulatory mechanism.

Tuite MF, Serio TR.

Nat Rev Mol Cell Biol. 2010 Dec;11(12):823-33. doi: 10.1038/nrm3007. Epub 2010 Nov 17. Review.


Prion-like propagation of cytosolic protein aggregates: insights from cell culture models.

Krammer C, Schätzl HM, Vorberg I.

Prion. 2009 Oct-Dec;3(4):206-12. Epub 2009 Oct 4. Review.

Items per page

Supplemental Content

Support Center