Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 23

1.

A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

Zhou B, Wu X, Lv Z, Zhang L, Guo X.

PLoS One. 2016 Sep 15;11(9):e0162657. doi: 10.1371/journal.pone.0162657.

2.

Accounting for linear transformations of EEG and MEG data in source analysis.

Hipp JF, Siegel M.

PLoS One. 2015 Apr 2;10(4):e0121048. doi: 10.1371/journal.pone.0121048. Erratum in: PLoS One. 2015;10(5):e0128689.

3.

How many separable sources? Model selection in independent components analysis.

Woods RP, Hansen LK, Strother S.

PLoS One. 2015 Mar 26;10(3):e0118877. doi: 10.1371/journal.pone.0118877.

4.
5.

Magnetoencephalography: fundamentals and established and emerging clinical applications in radiology.

Braeutigam S.

ISRN Radiol. 2013 Aug 12;2013:529463. doi: 10.5402/2013/529463. Review.

6.

A novel algorithm for independent component analysis with reference and methods for its applications.

Mi JX.

PLoS One. 2014 May 14;9(5):e93984. doi: 10.1371/journal.pone.0093984.

7.

Stimulus-response mappings shape inhibition processes: a combined EEG-fMRI study of contextual stopping.

Lavallee CF, Herrmann CS, Weerda R, Huster RJ.

PLoS One. 2014 Apr 24;9(4):e96159. doi: 10.1371/journal.pone.0096159.

8.

The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer's disease diagnosis.

Cassani R, Falk TH, Fraga FJ, Kanda PA, Anghinah R.

Front Aging Neurosci. 2014 Mar 25;6:55. doi: 10.3389/fnagi.2014.00055.

9.

Removal of EOG artifacts from EEG recordings using stationary subspace analysis.

Zeng H, Song A.

ScientificWorldJournal. 2014 Jan 12;2014:259121. doi: 10.1155/2014/259121.

10.

EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition.

Zeng H, Song A, Yan R, Qin H.

Sensors (Basel). 2013 Nov 1;13(11):14839-59. doi: 10.3390/s131114839.

11.

Automatic and direct identification of blink components from scalp EEG.

Kong W, Zhou Z, Hu S, Zhang J, Babiloni F, Dai G.

Sensors (Basel). 2013 Aug 16;13(8):10783-801. doi: 10.3390/s130810783.

12.

Novel inter-hemispheric white matter connectivity in the BTBR mouse model of autism.

Miller VM, Gupta D, Neu N, Cotroneo A, Boulay CB, Seegal RF.

Brain Res. 2013 Jun 4;1513:26-33. doi: 10.1016/j.brainres.2013.04.001.

13.

Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia.

Sui J, He H, Pearlson GD, Adali T, Kiehl KA, Yu Q, Clark VP, Castro E, White T, Mueller BA, Ho BC, Andreasen NC, Calhoun VD.

Neuroimage. 2013 Feb 1;66:119-32. doi: 10.1016/j.neuroimage.2012.10.051.

14.

Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

Wang Y, Wang YT, Jung TP.

PLoS One. 2012;7(5):e37665. doi: 10.1371/journal.pone.0037665.

15.

On joint diagonalization of cumulant matrices for independent component analysis of MRS and EEG signals.

Albera L, Kachenoura A, Wendling F, Senhadji L, Merlet I.

Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1902-5. doi: 10.1109/IEMBS.2010.5627334.

16.

Electromyogenic Artifacts and Electroencephalographic Inferences Revisited.

McMenamin BW, Shackman AJ, Greischar LL, Davidson RJ.

Neuroimage. 2011 Jan 1;54(1):4-9.

17.

Independent component analysis for source localization of EEG sleep spindle components.

Ventouras EM, Ktonas PY, Tsekou H, Paparrigopoulos T, Kalatzis I, Soldatos CR.

Comput Intell Neurosci. 2010:329436. doi: 10.1155/2010/329436.

18.

Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG.

McMenamin BW, Shackman AJ, Maxwell JS, Bachhuber DR, Koppenhaver AM, Greischar LL, Davidson RJ.

Neuroimage. 2010 Feb 1;49(3):2416-32. doi: 10.1016/j.neuroimage.2009.10.010.

19.

A review of independent component analysis application to microarray gene expression data.

Kong W, Vanderburg CR, Gunshin H, Rogers JT, Huang X.

Biotechniques. 2008 Nov;45(5):501-20. doi: 10.2144/000112950. Review.

20.

Spatial analysis of intracerebral electroencephalographic signals in the time and frequency domain: identification of epileptogenic networks in partial epilepsy.

Wendling F, Bartolomei F, Senhadji L.

Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):297-316. doi: 10.1098/rsta.2008.0220. Review.

Supplemental Content

Support Center