Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 40

1.

Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment.

Labak CM, Wang PY, Arora R, Guda MR, Asuthkar S, Tsung AJ, Velpula KK.

Am J Cancer Res. 2016 Aug 1;6(8):1599-608. Review.

2.

Oxidative Dimerization of PHD2 is Responsible for its Inactivation and Contributes to Metabolic Reprogramming via HIF-1α Activation.

Lee G, Won HS, Lee YM, Choi JW, Oh TI, Jang JH, Choi DK, Lim BO, Kim YJ, Park JW, Puigserver P, Lim JH.

Sci Rep. 2016 Jan 7;6:18928. doi: 10.1038/srep18928.

3.

Ovarian clear cell carcinoma meets metabolism; HNF-1β confers survival benefits through the Warburg effect and ROS reduction.

Mandai M, Amano Y, Yamaguchi K, Matsumura N, Baba T, Konishi I.

Oncotarget. 2015 Oct 13;6(31):30704-14. doi: 10.18632/oncotarget.5228. Review.

4.

Oncogenes strike a balance between cellular growth and homeostasis.

Qiu B, Simon MC.

Semin Cell Dev Biol. 2015 Jul;43:3-10. doi: 10.1016/j.semcdb.2015.08.005. Review.

5.

MTH1 expression is required for effective transformation by oncogenic HRAS.

Giribaldi MG, Munoz A, Halvorsen K, Patel A, Rai P.

Oncotarget. 2015 May 10;6(13):11519-29.

6.

Interplay Between HGF/SF-Met-Ras Signaling, Tumor Metabolism and Blood Flow as a Potential Target for Breast Cancer Therapy.

Natan S, Tsarfaty G, Horev J, Haklai R, Kloog Y, Tsarfaty I.

Oncoscience. 2013 Dec 11;1(1):30-8.

7.

Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway.

Makovski V, Jacob-Hirsch J, Gefen-Dor C, Shai B, Ehrlich M, Rechavi G, Kloog Y.

Cell Death Dis. 2014 Dec 4;5:e1557. doi: 10.1038/cddis.2014.502.

8.

Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy.

Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML.

Cell Death Dis. 2014 Nov 27;5:e1539. doi: 10.1038/cddis.2014.487.

9.

MiR-124 governs glioma growth and angiogenesis and enhances chemosensitivity by targeting R-Ras and N-Ras.

Shi Z, Chen Q, Li C, Wang L, Qian X, Jiang C, Liu X, Wang X, Li H, Kang C, Jiang T, Liu LZ, You Y, Liu N, Jiang BH.

Neuro Oncol. 2014 Oct;16(10):1341-53. doi: 10.1093/neuonc/nou084.

10.

The inflammatory cytokine TNFα cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells.

Leibovich-Rivkin T, Liubomirski Y, Meshel T, Abashidze A, Brisker D, Solomon H, Rotter V, Weil M, Ben-Baruch A.

BMC Cancer. 2014 Mar 6;14:158. doi: 10.1186/1471-2407-14-158.

11.

Metabolism addiction in pancreatic cancer.

Blum R, Kloog Y.

Cell Death Dis. 2014 Feb 20;5:e1065. doi: 10.1038/cddis.2014.38. Review.

12.

KRAS: feeding pancreatic cancer proliferation.

Bryant KL, Mancias JD, Kimmelman AC, Der CJ.

Trends Biochem Sci. 2014 Feb;39(2):91-100. doi: 10.1016/j.tibs.2013.12.004. Review.

13.

Highly porous drug-eluting structures: from wound dressings to stents and scaffolds for tissue regeneration.

Elsner JJ, Kraitzer A, Grinberg O, Zilberman M.

Biomatter. 2012 Oct-Dec;2(4):239-70. doi: 10.4161/biom.22838. Review.

14.

The Bmi-1/NF-κB/VEGF story: another hint for proteasome involvement in glioma angiogenesis?

Vlachostergios PJ, Papandreou CN.

J Cell Commun Signal. 2013 Dec;7(4):235-7. doi: 10.1007/s12079-013-0198-2.

15.

HIF-1α overexpression in ductal carcinoma in situ of the breast in BRCA1 and BRCA2 mutation carriers.

van der Groep P, van Diest PJ, Smolders YH, Ausems MG, van der Luijt RB, Menko FH, Bart J, de Vries EG, van der Wall E.

PLoS One. 2013;8(2):e56055. doi: 10.1371/journal.pone.0056055.

16.

Group IIa secretory phospholipase expression correlates with group IIa secretory phospholipase inhibition-mediated cell death in K-ras mutant lung cancer cells.

Yu JA, Li H, Meng X, Fullerton DA, Nemenoff RA, Mitchell JD, Weyant MJ.

J Thorac Cardiovasc Surg. 2012 Dec;144(6):1479-85. doi: 10.1016/j.jtcvs.2012.08.064.

17.

Design and in vitro activities of N-alkyl-N-[(8-R-2,2-dimethyl-2H-chromen-6-yl)methyl]heteroarylsulfonamides, novel, small-molecule hypoxia inducible factor-1 pathway inhibitors and anticancer agents.

Mun J, Jabbar AA, Devi NS, Yin S, Wang Y, Tan C, Culver D, Snyder JP, Van Meir EG, Goodman MM.

J Med Chem. 2012 Aug 9;55(15):6738-50. doi: 10.1021/jm300752n.

18.

FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice.

Goldberg L, Israeli R, Kloog Y.

Cell Death Dis. 2012 Mar 15;3:e284. doi: 10.1038/cddis.2012.24.

19.

Exploiting metabolic differences in glioma therapy.

Galeffi F, Turner DA.

Curr Drug Discov Technol. 2012 Dec;9(4):280-93. Review.

20.

Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System.

Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M.

Clin Med Insights Oncol. 2011;5:265-314. doi: 10.4137/CMO.S7685.

Items per page

Supplemental Content

Support Center