Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 21

1.

Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae.

Fujiwara T, Ohnuma M, Kuroiwa T, Ohbayashi R, Hirooka S, Miyagishima SY.

Front Plant Sci. 2017 Mar 14;8:343. doi: 10.3389/fpls.2017.00343. eCollection 2017.

2.

Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae11.

Lee J, Ghosh S, Saier MH Jr.

J Phycol. 2017 Jun;53(3):503-521. doi: 10.1111/jpy.12534. Epub 2017 Apr 26.

PMID:
28328149
3.

Membrane Proteomic Insights into the Physiology and Taxonomy of an Oleaginous Green Microalga.

Garibay-Hernández A, Barkla BJ, Vera-Estrella R, Martinez A, Pantoja O.

Plant Physiol. 2017 Jan;173(1):390-416. doi: 10.1104/pp.16.01240. Epub 2016 Nov 8.

PMID:
27837088
4.

A nitrogen source-dependent inducible and repressible gene expression system in the red alga Cyanidioschyzon merolae.

Fujiwara T, Kanesaki Y, Hirooka S, Era A, Sumiya N, Yoshikawa H, Tanaka K, Miyagishima SY.

Front Plant Sci. 2015 Aug 26;6:657. doi: 10.3389/fpls.2015.00657. eCollection 2015.

5.

Eisosome Ultrastructure and Evolution in Fungi, Microalgae, and Lichens.

Lee JH, Heuser JE, Roth R, Goodenough U.

Eukaryot Cell. 2015 Oct;14(10):1017-42. doi: 10.1128/EC.00106-15. Epub 2015 Aug 7.

6.

Development of a heat-shock inducible gene expression system in the red alga Cyanidioschyzon merolae.

Sumiya N, Fujiwara T, Kobayashi Y, Misumi O, Miyagishima SY.

PLoS One. 2014 Oct 22;9(10):e111261. doi: 10.1371/journal.pone.0111261. eCollection 2014.

7.

Dynamic composition, shaping and organization of plastid nucleoids.

Powikrowska M, Oetke S, Jensen PE, Krupinska K.

Front Plant Sci. 2014 Sep 4;5:424. doi: 10.3389/fpls.2014.00424. eCollection 2014. Review.

8.

Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals.

Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M.

Front Plant Sci. 2014 Jul 28;5:359. doi: 10.3389/fpls.2014.00359. eCollection 2014. Review.

9.

Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha.

Sharma N, Bhalla PL, Singh MB.

BMC Genomics. 2013 Dec 23;14:915. doi: 10.1186/1471-2164-14-915.

10.

A general framework of persistence strategies for biological systems helps explain domains of life.

Yafremava LS, Wielgos M, Thomas S, Nasir A, Wang M, Mittenthal JE, Caetano-Anollés G.

Front Genet. 2013 Feb 25;4:16. doi: 10.3389/fgene.2013.00016. eCollection 2013.

11.

Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana.

Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Studholme DJ, Maclean D, Jones JD.

PLoS Biol. 2011 Jul;9(7):e1001094. doi: 10.1371/journal.pbio.1001094. Epub 2011 Jul 5.

12.

Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation.

Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B, Dent R, Niyogi KK, Johnson X, Alric J, Wollman FA, Li H, Merchant SS.

Photosynth Res. 2010 Nov;106(1-2):3-17. doi: 10.1007/s11120-010-9555-7. Epub 2010 May 20.

13.

The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae.

Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T.

Plant Cell. 2010 Mar;22(3):772-81. doi: 10.1105/tpc.109.070227. Epub 2010 Mar 26.

14.

Transposable elements and factors influencing their success in eukaryotes.

Pritham EJ.

J Hered. 2009 Sep-Oct;100(5):648-55. doi: 10.1093/jhered/esp065. Epub 2009 Aug 7. Review.

15.

Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae.

Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T.

DNA Res. 2009 Feb;16(1):59-72. doi: 10.1093/dnares/dsn032. Epub 2009 Jan 14.

16.

Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components.

Dávila López M, Rosenblad MA, Samuelsson T.

Nucleic Acids Res. 2008 May;36(9):3001-10. doi: 10.1093/nar/gkn142. Epub 2008 Apr 4.

17.

A bifunctional locus (BIO3-BIO1) required for biotin biosynthesis in Arabidopsis.

Muralla R, Chen E, Sweeney C, Gray JA, Dickerman A, Nikolau BJ, Meinke D.

Plant Physiol. 2008 Jan;146(1):60-73. Epub 2007 Nov 9.

18.

Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life.

Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN.

Genome Biol. 2007;8(9):R198.

19.

A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae.

Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T.

BMC Biol. 2007 Jul 10;5:28.

20.

The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants.

Miura E, Kato Y, Matsushima R, Albrecht V, Laalami S, Sakamoto W.

Plant Cell. 2007 Apr;19(4):1313-28. Epub 2007 Apr 6.

Supplemental Content

Support Center