Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling.

Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF.

Microb Cell Fact. 2016 Oct 24;15(1):183.

2.

Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple.

Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ.

PLoS Genet. 2016 Aug 25;12(8):e1006273. doi: 10.1371/journal.pgen.1006273. eCollection 2016 Aug.

3.

Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex.

Vega M, Riera A, Fernández-Cid A, Herrero P, Moreno F.

J Biol Chem. 2016 Apr 1;291(14):7267-85. doi: 10.1074/jbc.M115.711408. Epub 2016 Feb 10.

4.

Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.

Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K, Potrero A, Friguet B, Kennedy BK, Schmidt M.

PLoS Genet. 2015 Jan 28;11(1):e1004968. doi: 10.1371/journal.pgen.1004968. eCollection 2015 Jan.

5.

Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.

Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E.

Front Plant Sci. 2014 May 20;5:190. doi: 10.3389/fpls.2014.00190. eCollection 2014. Review.

6.

Different levels of catabolite repression optimize growth in stable and variable environments.

New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ.

PLoS Biol. 2014 Jan;12(1):e1001764. doi: 10.1371/journal.pbio.1001764. Epub 2014 Jan 14.

7.

Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae.

Amigoni L, Martegani E, Colombo S.

Oxid Med Cell Longev. 2013;2013:678473. doi: 10.1155/2013/678473. Epub 2013 Sep 5.

8.

N-acetylglucosamine kinase, HXK1 is involved in morphogenetic transition and metabolic gene expression in Candida albicans.

Rao KH, Ghosh S, Natarajan K, Datta A.

PLoS One. 2013;8(1):e53638. doi: 10.1371/journal.pone.0053638. Epub 2013 Jan 14.

9.

Yeast importin-β is required for nuclear import of the Mig2 repressor.

Fernández-Cid A, Vega M, Herrero P, Moreno F.

BMC Cell Biol. 2012 Nov 6;13:31. doi: 10.1186/1471-2121-13-31.

10.

Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling.

Fernández-García P, Peláez R, Herrero P, Moreno F.

J Biol Chem. 2012 Dec 7;287(50):42151-64. doi: 10.1074/jbc.M112.401679. Epub 2012 Oct 12.

11.

The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.

Karunanithi S, Cullen PJ.

Genetics. 2012 Nov;192(3):869-87. doi: 10.1534/genetics.112.142661. Epub 2012 Aug 17.

12.

The plastid-localized pfkB-type carbohydrate kinases FRUCTOKINASE-LIKE 1 and 2 are essential for growth and development of Arabidopsis thaliana.

Gilkerson J, Perez-Ruiz JM, Chory J, Callis J.

BMC Plant Biol. 2012 Jul 8;12:102. doi: 10.1186/1471-2229-12-102.

13.

Application of structure equation modeling for inferring a serial transcriptional regulation in yeast.

Aburatani S.

Gene Regul Syst Bio. 2011;5:75-88. doi: 10.4137/GRSB.S7569. Epub 2011 Nov 10.

14.

Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae.

Busti S, Coccetti P, Alberghina L, Vanoni M.

Sensors (Basel). 2010;10(6):6195-240. doi: 10.3390/s100606195. Epub 2010 Jun 21. Review.

15.

Nuclear import of the yeast hexokinase 2 protein requires α/β-importin-dependent pathway.

Peláez R, Fernández-García P, Herrero P, Moreno F.

J Biol Chem. 2012 Jan 27;287(5):3518-29. doi: 10.1074/jbc.M111.317230. Epub 2011 Dec 7.

16.

The function of MoGlk1 in integration of glucose and ammonium utilization in Magnaporthe oryzae.

Zhang L, Lv R, Dou X, Qi Z, Hua C, Zhang H, Wang Z, Zheng X, Zhang Z.

PLoS One. 2011;6(7):e22809. doi: 10.1371/journal.pone.0022809. Epub 2011 Jul 27.

17.

EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis.

Schröder F, Lisso J, Müssig C.

Plant Physiol. 2011 Jul;156(3):1620-30. doi: 10.1104/pp.111.177204. Epub 2011 May 4.

18.

Two novel types of hexokinases in the moss Physcomitrella patens.

Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H.

BMC Plant Biol. 2011 Feb 14;11:32. doi: 10.1186/1471-2229-11-32.

19.

Switch between life history strategies due to changes in glycolytic enzyme gene dosage in Saccharomyces cerevisiae.

Wang S, Spor A, Nidelet T, Montalent P, Dillmann C, de Vienne D, Sicard D.

Appl Environ Microbiol. 2011 Jan;77(2):452-9. doi: 10.1128/AEM.00808-10. Epub 2010 Nov 12.

20.

Crystal structure of hexokinase KlHxk1 of Kluyveromyces lactis: a molecular basis for understanding the control of yeast hexokinase functions via covalent modification and oligomerization.

Kuettner EB, Kettner K, Keim A, Svergun DI, Volke D, Singer D, Hoffmann R, Müller EC, Otto A, Kriegel TM, Sträter N.

J Biol Chem. 2010 Dec 24;285(52):41019-33. doi: 10.1074/jbc.M110.185850. Epub 2010 Oct 12.

Supplemental Content

Support Center