Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 67

1.

Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum.

Ran Y, Thibodeau PH.

J Biol Chem. 2017 Feb 3;292(5):1559-1572. doi: 10.1074/jbc.M116.759811.

PMID:
27994049
2.

New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8.

Premchandar A, Kupniewska A, Bonna A, Faure G, Fraczyk T, Roldan A, Hoffmann B, Faria da Cunha M, Herrmann H, Lukacs GL, Edelman A, Dadlez M.

Protein Sci. 2017 Feb;26(2):343-354. doi: 10.1002/pro.3086.

PMID:
27870250
3.

Development and characterization of synthetic antibodies binding to the cystic fibrosis conductance regulator.

Gakhal AK, Jensen TJ, Bozoky Z, Roldan A, Lukacs GL, Forman-Kay J, Riordan JR, Sidhu SS.

MAbs. 2016 Aug-Sep;8(6):1167-76. doi: 10.1080/19420862.2016.1186320.

PMID:
27185291
4.

Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.

Gong X, Ahner A, Roldan A, Lukacs GL, Thibodeau PH, Frizzell RA.

J Biol Chem. 2016 Jan 22;291(4):2004-17. doi: 10.1074/jbc.M115.685628.

5.

Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

Ehrhardt A, Chung WJ, Pyle LC, Wang W, Nowotarski K, Mulvihill CM, Ramjeesingh M, Hong J, Velu SE, Lewis HA, Atwell S, Aller S, Bear CE, Lukacs GL, Kirk KL, Sorscher EJ.

J Biol Chem. 2016 Jan 22;291(4):1854-65. doi: 10.1074/jbc.M115.704809.

6.

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.

Corradi V, Vergani P, Tieleman DP.

J Biol Chem. 2015 Sep 18;290(38):22891-906. doi: 10.1074/jbc.M115.665125.

7.

Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization.

Chong PA, Farber PJ, Vernon RM, Hudson RP, Mittermaier AK, Forman-Kay JD.

J Biol Chem. 2015 Sep 18;290(38):22862-78. doi: 10.1074/jbc.M115.641134.

8.

Synonymous codon usage affects the expression of wild type and F508del CFTR.

Shah K, Cheng Y, Hahn B, Bridges R, Bradbury NA, Mueller DM.

J Mol Biol. 2015 Mar 27;427(6 Pt B):1464-79. doi: 10.1016/j.jmb.2015.02.003.

10.

Decoding F508del misfolding in cystic fibrosis.

Wang XR, Li C.

Biomolecules. 2014 May 6;4(2):498-509. doi: 10.3390/biom4020498. Review.

11.

Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence.

Xue P, Crum CM, Thibodeau PH.

PLoS One. 2014 May 19;9(5):e97360. doi: 10.1371/journal.pone.0097360.

12.

Membrane protein stability can be compromised by detergent interactions with the extramembranous soluble domains.

Yang Z, Wang C, Zhou Q, An J, Hildebrandt E, Aleksandrov LA, Kappes JC, DeLucas LJ, Riordan JR, Urbatsch IL, Hunt JF, Brouillette CG.

Protein Sci. 2014 Jun;23(6):769-89. doi: 10.1002/pro.2460.

13.

The silent codon change I507-ATC->ATT contributes to the severity of the ΔF508 CFTR channel dysfunction.

Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, Havasi V, Keiles S, Kappes J, Kumar R, Lefkowitz E, Sorscher EJ, Matalon S, Collawn JF, Bebok Z.

FASEB J. 2013 Nov;27(11):4630-45. doi: 10.1096/fj.13-227330.

14.

Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability.

Chong PA, Kota P, Dokholyan NV, Forman-Kay JD.

Cold Spring Harb Perspect Med. 2013 Mar 1;3(3):a009522. doi: 10.1101/cshperspect.a009522. Review.

15.

Cystic fibrosis transmembrane conductance regulator (ABCC7) structure.

Hunt JF, Wang C, Ford RC.

Cold Spring Harb Perspect Med. 2013 Feb 1;3(2):a009514. doi: 10.1101/cshperspect.a009514. Review.

16.

Development of CFTR Structure.

Patrick AE, Thomas PJ.

Front Pharmacol. 2012 Sep 6;3:162. doi: 10.3389/fphar.2012.00162.

17.

Molecular Chaperones as Targets to Circumvent the CFTR Defect in Cystic Fibrosis.

Chanoux RA, Rubenstein RC.

Front Pharmacol. 2012 Jul 17;3:137. doi: 10.3389/fphar.2012.00137.

18.

A chaperone trap contributes to the onset of cystic fibrosis.

Coppinger JA, Hutt DM, Razvi A, Koulov AV, Pankow S, Yates JR 3rd, Balch WE.

PLoS One. 2012;7(5):e37682. doi: 10.1371/journal.pone.0037682.

19.

The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology.

Guerriero CJ, Brodsky JL.

Physiol Rev. 2012 Apr;92(2):537-76. doi: 10.1152/physrev.00027.2011. Review.

20.

Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences.

Mendoza JL, Schmidt A, Li Q, Nuvaga E, Barrett T, Bridges RJ, Feranchak AP, Brautigam CA, Thomas PJ.

Cell. 2012 Jan 20;148(1-2):164-74. doi: 10.1016/j.cell.2011.11.023.

Items per page

Supplemental Content

Support Center