Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 31

1.

Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics.

Clinkenbeard EL, White KE.

Bone. 2017 Sep;102:31-39. doi: 10.1016/j.bone.2017.01.034. Epub 2017 Jan 31.

PMID:
28159712
2.

Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia.

Clinkenbeard EL, Cass TA, Ni P, Hum JM, Bellido T, Allen MR, White KE.

J Bone Miner Res. 2016 Jun;31(6):1247-57. doi: 10.1002/jbmr.2792. Epub 2016 Mar 4.

4.

Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia.

Lim YH, Ovejero D, Sugarman JS, Deklotz CM, Maruri A, Eichenfield LF, Kelley PK, Jüppner H, Gottschalk M, Tifft CJ, Gafni RI, Boyce AM, Cowen EW, Bhattacharyya N, Guthrie LC, Gahl WA, Golas G, Loring EC, Overton JD, Mane SM, Lifton RP, Levy ML, Collins MT, Choate KA.

Hum Mol Genet. 2014 Jan 15;23(2):397-407. doi: 10.1093/hmg/ddt429. Epub 2013 Sep 4.

5.

Insights from genetic disorders of phosphate homeostasis.

Christov M, Jüppner H.

Semin Nephrol. 2013 Mar;33(2):143-57. doi: 10.1016/j.semnephrol.2012.12.015. Review.

6.

Fibroblast growth factor 23: state of the field and future directions.

Bhattacharyya N, Chong WH, Gafni RI, Collins MT.

Trends Endocrinol Metab. 2012 Dec;23(12):610-8. doi: 10.1016/j.tem.2012.07.002. Epub 2012 Aug 24. Review.

7.

A mouse with an N-Ethyl-N-nitrosourea (ENU) Induced Trp589Arg Galnt3 mutation represents a model for hyperphosphataemic familial tumoural calcinosis.

Esapa CT, Head RA, Jeyabalan J, Evans H, Hough TA, Cheeseman MT, McNally EG, Carr AJ, Thomas GP, Brown MA, Croucher PI, Brown SD, Cox RD, Thakker RV.

PLoS One. 2012;7(8):e43205. doi: 10.1371/journal.pone.0043205. Epub 2012 Aug 13.

8.

FGF23 and syndromes of abnormal renal phosphate handling.

Bergwitz C, Jüppner H.

Adv Exp Med Biol. 2012;728:41-64. doi: 10.1007/978-1-4614-0887-1_3. Review.

9.

Miscellaneous non-inflammatory musculoskeletal conditions. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3 and αKlotho).

Farrow EG, Imel EA, White KE.

Best Pract Res Clin Rheumatol. 2011 Oct;25(5):735-47. doi: 10.1016/j.berh.2011.10.020. Review.

10.

Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

Ichikawa S, Austin AM, Gray AK, Allen MR, Econs MJ.

Endocrinology. 2011 Dec;152(12):4504-13. doi: 10.1210/en.2011-1137. Epub 2011 Oct 18.

11.

Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk.

Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, Eastell R, Prince RL, Eisman JA, Jones G, Sambrook PN, Reid IR, Dennison EM, Wark J, Richards JB, Uitterlinden AG, Spector TD, Esapa C, Cox RD, Brown SD, Thakker RV, Addison KA, Bradbury LA, Center JR, Cooper C, Cremin C, Estrada K, Felsenberg D, Glüer CC, Hadler J, Henry MJ, Hofman A, Kotowicz MA, Makovey J, Nguyen SC, Nguyen TV, Pasco JA, Pryce K, Reid DM, Rivadeneira F, Roux C, Stefansson K, Styrkarsdottir U, Thorleifsson G, Tichawangana R, Evans DM, Brown MA.

PLoS Genet. 2011 Apr;7(4):e1001372. doi: 10.1371/journal.pgen.1001372. Epub 2011 Apr 21.

12.

Tumor-induced osteomalacia.

Chong WH, Molinolo AA, Chen CC, Collins MT.

Endocr Relat Cancer. 2011 Jun 8;18(3):R53-77. doi: 10.1530/ERC-11-0006. Print 2011 Jun. Review.

13.

Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease.

Itoh N.

Cell Tissue Res. 2010 Oct;342(1):1-11. doi: 10.1007/s00441-010-1024-2. Epub 2010 Aug 24. Review.

14.

Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations.

Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, Austin AM, Sorenson AH, Pejin Z, Topouchian V, Quartier P, Cormier-Daire V, Dechaux M, Malandrinou FCh, Singhellakis PN, Le Merrer M, Econs MJ.

Am J Med Genet A. 2010 Apr;152A(4):896-903. doi: 10.1002/ajmg.a.33337.

15.

Recent advances in renal phosphate handling.

Farrow EG, White KE.

Nat Rev Nephrol. 2010 Apr;6(4):207-17. doi: 10.1038/nrneph.2010.17. Epub 2010 Feb 23. Review.

16.

Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active.

Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, Wesseling-Perry K, Wolf M, Salusky IB, Jüppner H.

J Clin Endocrinol Metab. 2010 Feb;95(2):578-85. doi: 10.1210/jc.2009-1603. Epub 2009 Dec 4.

17.

Familial tumoral calcinosis: from characterization of a rare phenotype to the pathogenesis of ectopic calcification.

Sprecher E.

J Invest Dermatol. 2010 Mar;130(3):652-60. doi: 10.1038/jid.2009.337. Epub 2009 Oct 29.

18.

The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis.

Razzaque MS.

Nat Rev Endocrinol. 2009 Nov;5(11):611-9. doi: 10.1038/nrendo.2009.196. Review.

19.

Disorders of phosphate homeostasis and tissue mineralisation.

Bergwitz C, Jüppner H.

Endocr Dev. 2009;16:133-56. doi: 10.1159/000223693. Epub 2009 Jun 3. Review.

20.

Mechanisms of renal phosphate loss in liver resection-associated hypophosphatemia.

Nafidi O, Lapointe RW, Lepage R, Kumar R, D'Amour P.

Ann Surg. 2009 May;249(5):824-7. doi: 10.1097/SLA.0b013e3181a3e562.

Supplemental Content

Support Center