Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 42

1.

Zymomonas mobilis as a model system for production of biofuels and biochemicals.

Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M.

Microb Biotechnol. 2016 Nov;9(6):699-717. doi: 10.1111/1751-7915.12408. Review.

2.

Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars.

Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M.

Biotechnol Biofuels. 2016 Sep 2;9(1):189. doi: 10.1186/s13068-016-0606-y.

3.

Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system.

Wang JL, Wu B, Qin H, You Y, Liu S, Shui ZX, Tan FR, Wang YW, Zhu QL, Li YB, Ruan ZY, Ma KD, Dai LC, Hu GQ, He MX.

Microb Cell Fact. 2016 Jun 10;15(1):101. doi: 10.1186/s12934-016-0503-x.

4.

The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway.

Rutkis R, Strazdina I, Balodite E, Lasa Z, Galinina N, Kalnenieks U.

PLoS One. 2016 Apr 21;11(4):e0153866. doi: 10.1371/journal.pone.0153866.

5.

Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823).

Zhao N, Pan Y, Liu H, Cheng Z.

Genome Announc. 2016 Apr 7;4(2). pii: e00193-16. doi: 10.1128/genomeA.00193-16.

6.

Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis.

Tan F, Wu B, Dai L, Qin H, Shui Z, Wang J, Zhu Q, Hu G, He M.

Microb Cell Fact. 2016 Jan 13;15:4. doi: 10.1186/s12934-015-0398-y.

7.

Analysis of a taurine-dependent promoter in Sinorhizobium meliloti that offers tight modulation of gene expression.

Mostafavi M, Lewis JC, Saini T, Bustamante JA, Gao IT, Tran TT, King SN, Huang Z, Chen JC.

BMC Microbiol. 2014 Nov 25;14:295. doi: 10.1186/s12866-014-0295-2.

8.

Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates.

Yang S, Franden MA, Brown SD, Chou YC, Pienkos PT, Zhang M.

Biotechnol Biofuels. 2014 Sep 30;7(1):140. doi: 10.1186/s13068-014-0140-8.

9.

Zymomonas mobilis: a novel platform for future biorefineries.

He MX, Wu B, Qin H, Ruan ZY, Tan FR, Wang JL, Shui ZX, Dai LC, Zhu QL, Pan K, Tang XY, Wang WG, Hu QC.

Biotechnol Biofuels. 2014 Jul 2;7:101. doi: 10.1186/1754-6834-7-101. Review.

10.

Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase.

Balodite E, Strazdina I, Galinina N, McLean S, Rutkis R, Poole RK, Kalnenieks U.

Microbiology. 2014 Sep;160(Pt 9):2045-52. doi: 10.1099/mic.0.081612-0.

11.

Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics.

Yang S, Pan C, Hurst GB, Dice L, Davison BH, Brown SD.

Front Microbiol. 2014 May 22;5:246. doi: 10.3389/fmicb.2014.00246.

12.

Discovery of ethanol-responsive small RNAs in Zymomonas mobilis.

Cho SH, Lei R, Henninger TD, Contreras LM.

Appl Environ Microbiol. 2014 Jul;80(14):4189-98. doi: 10.1128/AEM.00429-14.

13.

Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.

Kalnenieks U, Pentjuss A, Rutkis R, Stalidzans E, Fell DA.

Front Microbiol. 2014 Feb 5;5:42. doi: 10.3389/fmicb.2014.00042.

14.

Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose.

Mohagheghi A, Linger J, Smith H, Yang S, Dowe N, Pienkos PT.

Biotechnol Biofuels. 2014 Feb 1;7(1):19. doi: 10.1186/1754-6834-7-19.

15.

Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses.

Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M.

Biotechnol Biofuels. 2013 Dec 5;6(1):180. doi: 10.1186/1754-6834-6-180.

16.

Towards a carbon-negative sustainable bio-based economy.

Vanholme B, Desmet T, Ronsse F, Rabaey K, Van Breusegem F, De Mey M, Soetaert W, Boerjan W.

Front Plant Sci. 2013 Jun 3;4:174. doi: 10.3389/fpls.2013.00174.

17.

Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production.

Tan Z, Zhu X, Chen J, Li Q, Zhang X.

Appl Environ Microbiol. 2013 Aug;79(16):4838-44. doi: 10.1128/AEM.00826-13.

18.

Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses.

Zhang X, Wang T, Zhou W, Jia X, Wang H.

Microb Cell Fact. 2013 May 2;12:41. doi: 10.1186/1475-2859-12-41.

19.

Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens.

Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M.

J Biol Chem. 2013 Jun 14;288(24):17769-81. doi: 10.1074/jbc.M113.470567.

20.

Genetic engineering of microorganisms for biodiesel production.

Lin H, Wang Q, Shen Q, Zhan J, Zhao Y.

Bioengineered. 2013 Sep-Oct;4(5):292-304. doi: 10.4161/bioe.23114. Review.

Supplemental Content

Support Center