Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 48


Fabrication of a thermoresponsive cell culture dish: a key technology for cell sheet tissue engineering.

Kobayashi J, Okano T.

Sci Technol Adv Mater. 2010 May 11;11(1):014111. Review.


Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.

Krutkramelis K, Xia B, Oakey J.

Lab Chip. 2016 Apr 21;16(8):1457-65. doi: 10.1039/c6lc00254d.


3D Printing for Tissue Engineering.

Richards DJ, Tan Y, Jia J, Yao H, Mei Y.

Isr J Chem. 2013 Oct 1;53(9-10):805-814.


Embedded 3D Photopatterning of Hydrogels with Diverse and Complex Architectures for Tissue Engineering and Disease Models.

Davey SK, Aung A, Agrawal G, Lim HL, Kar M, Varghese S.

Tissue Eng Part C Methods. 2015 Nov;21(11):1188-96. doi: 10.1089/ten.TEC.2015.0179.


Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells.

Salmasi S, Kalaskar DM, Yoon WW, Blunn GW, Seifalian AM.

World J Stem Cells. 2015 Mar 26;7(2):266-80. doi: 10.4252/wjsc.v7.i2.266. Review.


Orientation in multi-layer chitosan hydrogel: morphology, mechanism, and design principle.

Nie J, Lu W, Ma J, Yang L, Wang Z, Qin A, Hu Q.

Sci Rep. 2015 Jan 6;5:7635. doi: 10.1038/srep07635.


Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing.

Wüst S, Müller R, Hofmann S.

J Funct Biomater. 2011 Aug 4;2(3):119-54. doi: 10.3390/jfb2030119.


Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers.

Yajima Y, Yamada M, Yamada E, Iwase M, Seki M.

Biomicrofluidics. 2014 Apr 17;8(2):024115. doi: 10.1063/1.4871936.


Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles.

Rangarajan S, Madden L, Bursac N.

Ann Biomed Eng. 2014 Jul;42(7):1391-405. doi: 10.1007/s10439-013-0966-4. Review.


Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation.

Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H.

Adv Mater. 2013 Nov 6;25(41):5863-8. doi: 10.1002/adma.201301484.


Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size.

Loh QL, Choong C.

Tissue Eng Part B Rev. 2013 Dec;19(6):485-502. doi: 10.1089/ten.TEB.2012.0437. Review.


Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments.

Li CY, Wood DK, Huang JH, Bhatia SN.

Lab Chip. 2013 May 21;13(10):1969-78. doi: 10.1039/c3lc41300d.


The future of carbon dioxide for polymer processing in tissue engineering.

Bhamidipati M, Scurto AM, Detamore MS.

Tissue Eng Part B Rev. 2013 Jun;19(3):221-32. doi: 10.1089/ten.teb.2012.0361. Review.


Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis.

Kinney MA, McDevitt TC.

Trends Biotechnol. 2013 Feb;31(2):78-84. doi: 10.1016/j.tibtech.2012.11.001. Review.


Directing tissue morphogenesis via self-assembly of vascular mesenchymal cells.

Chen TH, Zhu X, Pan L, Zeng X, Garfinkel A, Tintut Y, Demer LL, Zhao X, Ho CM.

Biomaterials. 2012 Dec;33(35):9019-26. doi: 10.1016/j.biomaterials.2012.08.067.


The role of small molecules in musculoskeletal regeneration.

Lo KW, Ashe KM, Kan HM, Laurencin CT.

Regen Med. 2012 Jul;7(4):535-49. doi: 10.2217/rme.12.33. Review.


An Optically Controlled 3D Cell Culturing System.

Ishii KS, Hu W, Namekar SA, Ohta AT.

Adv Optoelectron. 2011 Jan 1;2011. pii: 253989.


Microfabricated biomaterials for engineering 3D tissues.

Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A.

Adv Mater. 2012 Apr 10;24(14):1782-804. doi: 10.1002/adma.201104631. Review.

Items per page

Supplemental Content

Support Center