Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa.

Pu M, Sheng L, Song S, Gong T, Wood TK.

Front Microbiol. 2018 Feb 27;9:315. doi: 10.3389/fmicb.2018.00315. eCollection 2018.

2.

The Small RNA ErsA of Pseudomonas aeruginosa Contributes to Biofilm Development and Motility through Post-transcriptional Modulation of AmrZ.

Falcone M, Ferrara S, Rossi E, Johansen HK, Molin S, Bertoni G.

Front Microbiol. 2018 Feb 15;9:238. doi: 10.3389/fmicb.2018.00238. eCollection 2018.

3.

Two-component systems required for virulence in Pseudomonas aeruginosa.

Francis VI, Stevenson EC, Porter SL.

FEMS Microbiol Lett. 2017 Jun 15;364(11). doi: 10.1093/femsle/fnx104. Review.

4.

Phage Inhibit Pathogen Dissemination by Targeting Bacterial Migrants in a Chronic Infection Model.

Darch SE, Kragh KN, Abbott EA, Bjarnsholt T, Bull JJ, Whiteley M.

MBio. 2017 Apr 4;8(2). pii: e00240-17. doi: 10.1128/mBio.00240-17.

5.

Small Colony Variants and Single Nucleotide Variations in Pf1 Region of PB1 Phage-Resistant Pseudomonas aeruginosa.

Lim WS, Phang KK, Tan AH, Li SF, Ow DS.

Front Microbiol. 2016 Mar 9;7:282. doi: 10.3389/fmicb.2016.00282. eCollection 2016.

6.

Antimicrobial Pressure of Ciprofloxacin and Gentamicin on Biofilm Development by an Endoscope-Isolated Pseudomonas aeruginosa.

Machado I, Graça J, Lopes H, Lopes S, Pereira MO.

ISRN Biotechnol. 2012 Aug 28;2013:178646. doi: 10.5402/2013/178646. eCollection 2013.

7.

Variations in motility and biofilm formation of Salmonella enterica serovar Typhi.

Kalai Chelvam K, Chai LC, Thong KL.

Gut Pathog. 2014 Feb 5;6(1):2. doi: 10.1186/1757-4749-6-2.

8.

Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection.

Staudinger BJ, Muller JF, Halldórsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreðsson M, Guðmundsson GH, Singh PK.

Am J Respir Crit Care Med. 2014 Apr 1;189(7):812-24. doi: 10.1164/rccm.201312-2142OC.

9.

Pseudomonas aeruginosa enhances production of a non-alginate exopolysaccharide during long-term colonization of the cystic fibrosis lung.

Huse HK, Kwon T, Zlosnik JE, Speert DP, Marcotte EM, Whiteley M.

PLoS One. 2013 Dec 6;8(12):e82621. doi: 10.1371/journal.pone.0082621. eCollection 2013.

10.

Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?

Beceiro A, Tomás M, Bou G.

Clin Microbiol Rev. 2013 Apr;26(2):185-230. doi: 10.1128/CMR.00059-12. Review.

11.

MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline).

Lamarche MG, Déziel E.

PLoS One. 2011;6(9):e24310. doi: 10.1371/journal.pone.0024310. Epub 2011 Sep 21.

12.

Hacking into bacterial biofilms: a new therapeutic challenge.

Bordi C, de Bentzmann S.

Ann Intensive Care. 2011 Jun 13;1(1):19. doi: 10.1186/2110-5820-1-19.

13.

Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

Mulcahy H, Lewenza S.

PLoS One. 2011;6(8):e23307. doi: 10.1371/journal.pone.0023307. Epub 2011 Aug 16.

14.

Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa.

Tian ZX, Fargier E, Mac Aogáin M, Adams C, Wang YP, O'Gara F.

Nucleic Acids Res. 2009 Dec;37(22):7546-59. doi: 10.1093/nar/gkp828.

15.

Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo.

Boulette ML, Baynham PJ, Jorth PA, Kukavica-Ibrulj I, Longoria A, Barrera K, Levesque RC, Whiteley M.

J Bacteriol. 2009 Oct;191(20):6329-34. doi: 10.1128/JB.00817-09. Epub 2009 Aug 7.

16.

Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885).

Ueda A, Wood TK.

PLoS Pathog. 2009 Jun;5(6):e1000483. doi: 10.1371/journal.ppat.1000483. Epub 2009 Jun 19.

17.

Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception.

Ramsey MM, Whiteley M.

Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1578-83. doi: 10.1073/pnas.0809533106. Epub 2009 Jan 21.

18.

Pseudomonas aeruginosa twitching motility-mediated chemotaxis towards phospholipids and fatty acids: specificity and metabolic requirements.

Miller RM, Tomaras AP, Barker AP, Voelker DR, Chan ED, Vasil AI, Vasil ML.

J Bacteriol. 2008 Jun;190(11):4038-49. doi: 10.1128/JB.00129-08. Epub 2008 Apr 4.

19.

Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum.

Palmer KL, Aye LM, Whiteley M.

J Bacteriol. 2007 Nov;189(22):8079-87. Epub 2007 Sep 14. Erratum in: J Bacteriol. 2009 Apr;191(8):2906.

20.

A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans.

Brown SA, Whiteley M.

J Bacteriol. 2007 Sep;189(17):6407-14. Epub 2007 Jun 22.

Supplemental Content

Support Center