Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 47

1.

Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome.

Feri A, Loll-Krippleber R, Commere PH, Maufrais C, Sertour N, Schwartz K, Sherlock G, Bougnoux ME, d'Enfert C, Legrand M.

MBio. 2016 Oct 11;7(5). pii: e01109-16. doi: 10.1128/mBio.01109-16.

2.

Plasticity of Candida albicans Biofilms.

Soll DR, Daniels KJ.

Microbiol Mol Biol Rev. 2016 Jun 1;80(3):565-95. doi: 10.1128/MMBR.00068-15. Print 2016 Sep. Review.

PMID:
27250770
3.

Binding Sites in the EFG1 Promoter for Transcription Factors in a Proposed Regulatory Network: A Functional Analysis in the White and Opaque Phases of Candida albicans.

Pujol C, Srikantha T, Park YN, Daniels KJ, Soll DR.

G3 (Bethesda). 2016 Jun 1;6(6):1725-37. doi: 10.1534/g3.116.029785.

4.

Selective Advantages of a Parasexual Cycle for the Yeast Candida albicans.

Zhang N, Magee BB, Magee PT, Holland BR, Rodrigues E, Holmes AR, Cannon RD, Schmid J.

Genetics. 2015 Aug;200(4):1117-32. doi: 10.1534/genetics.115.177170. Epub 2015 Jun 10.

5.

Parasexual Ploidy Reduction Drives Population Heterogeneity Through Random and Transient Aneuploidy in Candida albicans.

Hickman MA, Paulson C, Dudley A, Berman J.

Genetics. 2015 Jul;200(3):781-94. doi: 10.1534/genetics.115.178020. Epub 2015 May 18.

6.

Role of Tec1 in the development, architecture, and integrity of sexual biofilms of Candida albicans.

Daniels KJ, Srikantha T, Pujol C, Park YN, Soll DR.

Eukaryot Cell. 2015 Mar;14(3):228-40. doi: 10.1128/EC.00224-14. Epub 2015 Jan 2.

7.

Genetic and phenotypic intra-species variation in Candida albicans.

Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo CA.

Genome Res. 2015 Mar;25(3):413-25. doi: 10.1101/gr.174623.114. Epub 2014 Dec 11.

8.

Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes.

Schwarzmüller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, Ames L, Firon A, Green B, Cabral V, Marcet-Houben M, Jacobsen ID, Quintin J, Seider K, Frohner I, Glaser W, Jungwirth H, Bachellier-Bassi S, Chauvel M, Zeidler U, Ferrandon D, Gabaldón T, Hube B, d'Enfert C, Rupp S, Cormack B, Haynes K, Kuchler K.

PLoS Pathog. 2014 Jun 19;10(6):e1004211. doi: 10.1371/journal.ppat.1004211. eCollection 2014 Jun.

9.

The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans.

Soll DR.

J Oral Microbiol. 2014 Jan 15;6. doi: 10.3402/jom.v6.22993. eCollection 2014 Jan 15. Review.

10.

Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals.

Yang F, Kravets A, Bethlendy G, Welle S, Rustchenko E.

Antimicrob Agents Chemother. 2013 Oct;57(10):5026-36. doi: 10.1128/AAC.00516-13. Epub 2013 Jul 29.

11.

Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism.

Pande K, Chen C, Noble SM.

Nat Genet. 2013 Sep;45(9):1088-91. doi: 10.1038/ng.2710. Epub 2013 Jul 28.

12.

Candida albicans forms a specialized "sexual" as well as "pathogenic" biofilm.

Park YN, Daniels KJ, Pujol C, Srikantha T, Soll DR.

Eukaryot Cell. 2013 Aug;12(8):1120-31. doi: 10.1128/EC.00112-13. Epub 2013 Jun 14.

13.

Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability, and drug resistance of Candida albicans a/α biofilms.

Srikantha T, Daniels KJ, Pujol C, Kim E, Soll DR.

Eukaryot Cell. 2013 Jun;12(6):875-88. doi: 10.1128/EC.00071-13. Epub 2013 Apr 5.

14.

MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation.

Porman AM, Hirakawa MP, Jones SK, Wang N, Bennett RJ.

PLoS Genet. 2013 Mar;9(3):e1003369. doi: 10.1371/journal.pgen.1003369. Epub 2013 Mar 21.

15.

Alternative mating type configurations (a/α versus a/a or α/α) of Candida albicans result in alternative biofilms regulated by different pathways.

Yi S, Sahni N, Daniels KJ, Lu KL, Srikantha T, Huang G, Garnaas AM, Soll DR.

PLoS Biol. 2011 Aug;9(8):e1001117. doi: 10.1371/journal.pbio.1001117. Epub 2011 Aug 2.

16.

The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans.

Legrand M, Chan CL, Jauert PA, Kirkpatrick DT.

Fungal Genet Biol. 2011 Aug;48(8):823-30. doi: 10.1016/j.fgb.2011.04.005. Epub 2011 Apr 13.

17.

Self-induction of a/a or alpha/alpha biofilms in Candida albicans is a pheromone-based paracrine system requiring switching.

Yi S, Sahni N, Daniels KJ, Lu KL, Huang G, Srikantha T, Soll DR.

Eukaryot Cell. 2011 Jun;10(6):753-60. doi: 10.1128/EC.05055-11. Epub 2011 Apr 15.

18.

Rad52 function prevents chromosome loss and truncation in Candida albicans.

Andaluz E, Bellido A, Gómez-Raja J, Selmecki A, Bouchonville K, Calderone R, Berman J, Larriba G.

Mol Microbiol. 2011 Mar;79(6):1462-82. doi: 10.1111/j.1365-2958.2011.07532.x. Epub 2011 Jan 27.

19.

Noise-driven heterogeneity in the rate of genetic-variant generation as a basis for evolvability.

Capp JP.

Genetics. 2010 Jun;185(2):395-404. doi: 10.1534/genetics.110.118190. Review.

20.

Candidemia surveillance in Brazil: evidence for a geographical boundary defining an area exhibiting an abatement of infections by Candida albicans group 2 strains.

Da Matta DA, Melo AS, Colombo AL, Frade JP, Nucci M, Lott TJ.

J Clin Microbiol. 2010 Sep;48(9):3062-7. doi: 10.1128/JCM.00262-10. Epub 2010 Jun 30.

Supplemental Content

Support Center