Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 37

1.

Deciphering the function of the CNGB1b subunit in olfactory CNG channels.

Nache V, Wongsamitkul N, Kusch J, Zimmer T, Schwede F, Benndorf K.

Sci Rep. 2016 Jul 11;6:29378. doi: 10.1038/srep29378.

2.

Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment.

Tanaka N, Dutrow EV, Miyadera K, Delemotte L, MacDermaid CM, Reinstein SL, Crumley WR, Dixon CJ, Casal ML, Klein ML, Aguirre GD, Tanaka JC, Guziewicz KE.

PLoS One. 2015 Sep 25;10(9):e0138943. doi: 10.1371/journal.pone.0138943. eCollection 2015.

3.
4.

Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel.

Gofman Y, Schärfe C, Marks DS, Haliloglu T, Ben-Tal N.

PLoS Comput Biol. 2014 Dec 4;10(12):e1003976. doi: 10.1371/journal.pcbi.1003976. eCollection 2014 Dec.

5.

CNGB3-achromatopsia clinical trial with CNTF: diminished rod pathway responses with no evidence of improvement in cone function.

Zein WM, Jeffrey BG, Wiley HE, Turriff AE, Tumminia SJ, Tao W, Bush RA, Marangoni D, Wen R, Wei LL, Sieving PA.

Invest Ophthalmol Vis Sci. 2014 Sep 9;55(10):6301-8. doi: 10.1167/iovs.14-14860.

6.

Homozygous missense variant in the human CNGA3 channel causes cone-rod dystrophy.

Shaikh RS, Reuter P, Sisk RA, Kausar T, Shahzad M, Maqsood MI, Yousif A, Ali M, Riazuddin S, Wissinger B, Ahmed ZM.

Eur J Hum Genet. 2015 Apr;23(4):473-80. doi: 10.1038/ejhg.2014.136. Epub 2014 Jul 23.

7.

Alternative splicing governs cone cyclic nucleotide-gated (CNG) channel sensitivity to regulation by phosphoinositides.

Dai G, Sherpa T, Varnum MD.

J Biol Chem. 2014 May 9;289(19):13680-90. doi: 10.1074/jbc.M114.562272. Epub 2014 Mar 27.

8.

A cyclic nucleotide-gated channel mutation associated with canine daylight blindness provides insight into a role for the S2 segment tri-Asp motif in channel biogenesis.

Tanaka N, Delemotte L, Klein ML, Komáromy AM, Tanaka JC.

PLoS One. 2014 Feb 21;9(2):e88768. doi: 10.1371/journal.pone.0088768. eCollection 2014.

9.

The Concise Guide to PHARMACOLOGY 2013/14: ion channels.

Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ; CGTP Collaborators.

Br J Pharmacol. 2013 Dec;170(8):1607-51. doi: 10.1111/bph.12447.

10.

Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating.

Meighan SE, Meighan PC, Rich ED, Brown RL, Varnum MD.

Biochemistry. 2013 Nov 19;52(46):8352-62. doi: 10.1021/bi400824x. Epub 2013 Nov 11.

11.

Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells.

Liu C, Sherpa T, Varnum MD.

Mol Vis. 2013 Jun 11;19:1268-81. Print 2013.

12.

A suppressor screen of the chimeric AtCNGC11/12 reveals residues important for intersubunit interactions of cyclic nucleotide-gated ion channels.

Abdel-Hamid H, Chin K, Moeder W, Shahinas D, Gupta D, Yoshioka K.

Plant Physiol. 2013 Jul;162(3):1681-93. doi: 10.1104/pp.113.217539. Epub 2013 Jun 4.

13.

CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions.

Dai G, Varnum MD.

Am J Physiol Cell Physiol. 2013 Jul 15;305(2):C147-59. doi: 10.1152/ajpcell.00037.2013. Epub 2013 Apr 3.

14.

Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.

Dai G, Peng C, Liu C, Varnum MD.

J Gen Physiol. 2013 Apr;141(4):413-30. doi: 10.1085/jgp.201210944.

15.

The where and how of PIP regulation of cone photoreceptor CNG channels.

Zhou L, Logothetis DE.

J Gen Physiol. 2013 Apr;141(4):403-7. doi: 10.1085/jgp.201310981. No abstract available.

16.

Restoration of proper trafficking to the cell surface for membrane proteins harboring cysteine mutations.

Lopez-Rodriguez A, Holmgren M.

PLoS One. 2012;7(10):e47693. doi: 10.1371/journal.pone.0047693. Epub 2012 Oct 17.

17.

Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.

Meighan PC, Meighan SE, Rich ED, Brown RL, Varnum MD.

Channels (Austin). 2012 May-Jun;6(3):181-96. doi: 10.4161/chan.20904. Epub 2012 May 1.

18.

AAV-mediated cone rescue in a naturally occurring mouse model of CNGA3-achromatopsia.

Pang JJ, Deng WT, Dai X, Lei B, Everhart D, Umino Y, Li J, Zhang K, Mao S, Boye SL, Liu L, Chiodo VA, Liu X, Shi W, Tao Y, Chang B, Hauswirth WW.

PLoS One. 2012;7(4):e35250. doi: 10.1371/journal.pone.0035250. Epub 2012 Apr 11. Erratum in: PLoS One. 2014;9(1). doi:10.1371/annotation/29fb0ebc-b1c7-4d05-bd70-d29b10299df4.

19.

Biochemical characterization of cone cyclic nucleotide-gated (CNG) channel using the infrared fluorescence detection system.

Ding XQ, Matveev A, Singh A, Komori N, Matsumoto H.

Adv Exp Med Biol. 2012;723:769-75. doi: 10.1007/978-1-4614-0631-0_98. No abstract available.

20.

Defective trafficking of cone photoreceptor CNG channels induces the unfolded protein response and ER-stress-associated cell death.

Duricka DL, Brown RL, Varnum MD.

Biochem J. 2012 Jan 15;441(2):685-96. doi: 10.1042/BJ20111004.

Supplemental Content

Support Center