Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Listeriomics: an Interactive Web Platform for Systems Biology of Listeria.

BĂ©cavin C, Koutero M, Tchitchek N, Cerutti F, Lechat P, Maillet N, Hoede C, Chiapello H, Gaspin C, Cossart P.

mSystems. 2017 Mar 14;2(2). pii: e00186-16. doi: 10.1128/mSystems.00186-16. eCollection 2017 Mar-Apr.

2.
3.

Singleton Sequence Type 382, an Emerging Clonal Group of Listeria monocytogenes Associated with Three Multistate Outbreaks Linked to Contaminated Stone Fruit, Caramel Apples, and Leafy Green Salad.

Chen Y, Luo Y, Pettengill J, Timme R, Melka D, Doyle M, Jackson A, Parish M, Hammack TS, Allard MW, Brown EW, Strain EA.

J Clin Microbiol. 2017 Mar;55(3):931-941. doi: 10.1128/JCM.02140-16. Epub 2017 Jan 4.

4.

Novel Cadmium Resistance Determinant in Listeria monocytogenes.

Parsons C, Lee S, Jayeola V, Kathariou S.

Appl Environ Microbiol. 2017 Feb 15;83(5). pii: e02580-16. doi: 10.1128/AEM.02580-16. Print 2017 Mar 1.

PMID:
27986731
5.

A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes.

Smith MK, Draper LA, Hazelhoff PJ, Cotter PD, Ross RP, Hill C.

Front Microbiol. 2016 Nov 30;7:1939. eCollection 2016.

6.

Utilization of multiple substrates by butyrate kinase from Listeria monocytogenes.

Sirobhushanam S, Galva C, Saunders LP, Sen S, Jayaswal R, Wilkinson BJ, Gatto C.

Biochim Biophys Acta. 2017 Mar;1862(3):283-290. doi: 10.1016/j.bbalip.2016.12.001. Epub 2016 Dec 6.

PMID:
27940001
7.

Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.

Chen P, den Bakker HC, Korlach J, Kong N, Storey DB, Paxinos EE, Ashby M, Clark T, Luong K, Wiedmann M, Weimer BC.

Appl Environ Microbiol. 2017 Jan 17;83(3). pii: e02091-16. doi: 10.1128/AEM.02091-16. Print 2017 Feb 1.

PMID:
27836852
8.

The Capacity of Listeria Monocytogenes Mutants with In-Frame Deletions in Putative ATP-Binding Cassette Transporters to form Biofilms and Comparison with the Wild Type.

Ceruso M, Fratamico P, Chirollo C, Taglialatela R, Cortesi ML, Pepe T.

Ital J Food Saf. 2014 Feb 4;3(1):1657. eCollection 2014 Jan 21.

9.

InlP, a New Virulence Factor with Strong Placental Tropism.

Faralla C, Rizzuto GA, Lowe DE, Kim B, Cooke C, Shiow LR, Bakardjiev AI.

Infect Immun. 2016 Nov 18;84(12):3584-3596. Print 2016 Dec.

PMID:
27736782
10.

Listeria monocytogenes strains which are underrepresented during selective enrichment with the ISO method might dominate during passage through simulated gastric fluid and in vitro infection of Caco-2 cells.

Zilelidou E, Karmiri CV, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Tsakalidou E, Papadimitriou K, Drosinos E, Skandamis P.

Appl Environ Microbiol. 2016 Sep 16. pii: AEM.02120-16. [Epub ahead of print]

PMID:
27637880
11.

Expression of Surface Protein LapB by a Wide Spectrum of Listeria monocytogenes Serotypes as Demonstrated with Anti-LapB Monoclonal Antibodies.

Boivin T, Elmgren C, Brooks BW, Huang H, Pagotto F, Lin M.

Appl Environ Microbiol. 2016 Oct 27;82(22):6768-6778. Print 2016 Nov 15.

PMID:
27613687
12.

F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins.

Lee G, Chakraborty U, Gebhart D, Govoni GR, Zhou ZH, Scholl D.

J Bacteriol. 2016 Sep 22;198(20):2784-93. doi: 10.1128/JB.00489-16. Print 2016 Oct 15.

13.

Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools.

Zhang CX, Brooks BW, Huang H, Pagotto F, Lin M.

Appl Environ Microbiol. 2016 Aug 15;82(17):5465-76. doi: 10.1128/AEM.00774-16. Print 2016 Sep 1.

14.

Broad substrate specificity of phosphotransbutyrylase from Listeria monocytogenes: A potential participant in an alternative pathway for provision of acyl CoA precursors for fatty acid biosynthesis.

Sirobhushanam S, Galva C, Sen S, Wilkinson BJ, Gatto C.

Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1102-10. doi: 10.1016/j.bbalip.2016.06.003. Epub 2016 Jun 15.

PMID:
27320015
15.

Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni.

Sternes PR, Borneman AR.

BMC Genomics. 2016 Apr 27;17:308. doi: 10.1186/s12864-016-2604-7. Erratum in: BMC Genomics. 2016 Oct 20;17 (1):813.

16.

Attenuating Listeria monocytogenes Virulence by Targeting the Regulatory Protein PrfA.

Good JA, Andersson C, Hansen S, Wall J, Krishnan KS, Begum A, Grundström C, Niemiec MS, Vaitkevicius K, Chorell E, Wittung-Stafshede P, Sauer UH, Sauer-Eriksson AE, Almqvist F, Johansson J.

Cell Chem Biol. 2016 Mar 17;23(3):404-14. doi: 10.1016/j.chembiol.2016.02.013.

17.

Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks.

Burall LS, Grim CJ, Mammel MK, Datta AR.

PLoS One. 2016 Mar 7;11(3):e0150797. doi: 10.1371/journal.pone.0150797. eCollection 2016.

18.

DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes.

Zetzmann M, Okshevsky M, Endres J, Sedlag A, Caccia N, Auchter M, Waidmann MS, Desvaux M, Meyer RL, Riedel CU.

Front Microbiol. 2015 Dec 22;6:1428. doi: 10.3389/fmicb.2015.01428. eCollection 2015.

19.

Determination of Evolutionary Relationships of Outbreak-Associated Listeria monocytogenes Strains of Serotypes 1/2a and 1/2b by Whole-Genome Sequencing.

Bergholz TM, den Bakker HC, Katz LS, Silk BJ, Jackson KA, Kucerova Z, Joseph LA, Turnsek M, Gladney LM, Halpin JL, Xavier K, Gossack J, Ward TJ, Frace M, Tarr CL.

Appl Environ Microbiol. 2015 Nov 20;82(3):928-38. doi: 10.1128/AEM.02440-15.

20.

Supplemental Content

Support Center