Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 58

1.

Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair.

Zhu C, Lu L, Zhang J, Yue Z, Song J, Zong S, Liu M, Stovicek O, Gao YQ, Yi C.

Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7792-7. doi: 10.1073/pnas.1604591113. Epub 2016 Jun 27.

PMID:
27354518
2.

Expression and the Peculiar Enzymatic Behavior of the Trypanosoma cruzi NTH1 DNA Glycosylase.

Ormeño F, Barrientos C, Ramirez S, Ponce I, Valenzuela L, Sepúlveda S, Bitar M, Kemmerling U, Machado CR, Cabrera G, Galanti N.

PLoS One. 2016 Jun 10;11(6):e0157270. doi: 10.1371/journal.pone.0157270. eCollection 2016.

3.

DNA damage and repair in plants under ultraviolet and ionizing radiations.

Gill SS, Anjum NA, Gill R, Jha M, Tuteja N.

ScientificWorldJournal. 2015;2015:250158. doi: 10.1155/2015/250158. Epub 2015 Feb 2. Review.

4.

Differential stabilities and sequence-dependent base pair opening dynamics of Watson-Crick base pairs with 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxylcytosine.

Szulik MW, Pallan PS, Nocek B, Voehler M, Banerjee S, Brooks S, Joachimiak A, Egli M, Eichman BF, Stone MP.

Biochemistry. 2015 Feb 10;54(5):1294-305. doi: 10.1021/bi501534x. Epub 2015 Jan 29. Erratum in: Biochemistry. 2015 Apr 21;54(15):2550.

5.

Base excision repair capacity in informing healthspan.

Brenerman BM, Illuzzi JL, Wilson DM 3rd.

Carcinogenesis. 2014 Dec;35(12):2643-52. doi: 10.1093/carcin/bgu225. Epub 2014 Oct 29. Review.

6.

In vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity.

Wang M, Zhang H, Zhang W, Zhao Y, Yasmeen A, Zhou L, Yu X, Tang Z.

Nucleic Acids Res. 2014 Aug;42(14):9262-9. doi: 10.1093/nar/gku592. Epub 2014 Jul 16.

7.

Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.

Cannan WJ, Tsang BP, Wallace SS, Pederson DS.

J Biol Chem. 2014 Jul 18;289(29):19881-93. doi: 10.1074/jbc.M114.571588. Epub 2014 Jun 2.

8.

Apurinic/apyrimidinic endonucleases of Mycobacterium tuberculosis protect against DNA damage but are dispensable for the growth of the pathogen in guinea pigs.

Puri RV, Reddy PV, Tyagi AK.

PLoS One. 2014 May 6;9(5):e92035. doi: 10.1371/journal.pone.0092035. eCollection 2014.

9.

Insights into the glycosylase search for damage from single-molecule fluorescence microscopy.

Lee AJ, Warshaw DM, Wallace SS.

DNA Repair (Amst). 2014 Aug;20:23-31. doi: 10.1016/j.dnarep.2014.01.007. Epub 2014 Feb 20. Review.

10.

Base-excision repair activity of uracil-DNA glycosylase monitored using the latch zone of α-hemolysin.

Jin Q, Fleming AM, Johnson RP, Ding Y, Burrows CJ, White HS.

J Am Chem Soc. 2013 Dec 26;135(51):19347-53. doi: 10.1021/ja410615d. Epub 2013 Dec 11.

11.
12.

DNA glycosylases search for and remove oxidized DNA bases.

Wallace SS.

Environ Mol Mutagen. 2013 Dec;54(9):691-704. doi: 10.1002/em.21820. Epub 2013 Oct 7. Review.

13.

Structural investigation of a viral ortholog of human NEIL2/3 DNA glycosylases.

Prakash A, Eckenroth BE, Averill AM, Imamura K, Wallace SS, Doublié S.

DNA Repair (Amst). 2013 Dec;12(12):1062-71. doi: 10.1016/j.dnarep.2013.09.004. Epub 2013 Oct 10.

14.

An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products.

Mullins EA, Rubinson EH, Pereira KN, Calcutt MW, Christov PP, Eichman BF.

Methods. 2013 Nov;64(1):59-66. doi: 10.1016/j.ymeth.2013.07.020. Epub 2013 Jul 20.

15.

DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.

Boiteux S, Jinks-Robertson S.

Genetics. 2013 Apr;193(4):1025-64. doi: 10.1534/genetics.112.145219. Review.

16.

Highly mutagenic exocyclic DNA adducts are substrates for the human nucleotide incision repair pathway.

Prorok P, Saint-Pierre C, Gasparutto D, Fedorova OS, Ishchenko AA, Leh H, Buckle M, Tudek B, Saparbaev M.

PLoS One. 2012;7(12):e51776. doi: 10.1371/journal.pone.0051776. Epub 2012 Dec 14. Erratum in: PLoS One. 2013;8(7). doi:10.1371/annotation/861eeca8-8296-46b7-8bdf-947a0c8db4fa.

17.

Recent advances in the structural mechanisms of DNA glycosylases.

Brooks SC, Adhikary S, Rubinson EH, Eichman BF.

Biochim Biophys Acta. 2013 Jan;1834(1):247-71. doi: 10.1016/j.bbapap.2012.10.005. Epub 2012 Oct 14. Review.

18.

Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome.

Thomson JP, Lempiäinen H, Hackett JA, Nestor CE, Müller A, Bolognani F, Oakeley EJ, Schübeler D, Terranova R, Reinhardt D, Moggs JG, Meehan RR.

Genome Biol. 2012 Oct 3;13(10):R93. doi: 10.1186/gb-2012-13-10-r93.

19.

Formation and repair of pyridyloxobutyl DNA adducts and their relationship to tumor yield in A/J mice.

Urban AM, Upadhyaya P, Cao Q, Peterson LA.

Chem Res Toxicol. 2012 Oct 15;25(10):2167-78. doi: 10.1021/tx300245w. Epub 2012 Sep 13.

20.

AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud.

Rangam G, Schmitz KM, Cobb AJ, Petersen-Mahrt SK.

PLoS One. 2012;7(8):e43279. doi: 10.1371/journal.pone.0043279. Epub 2012 Aug 20.

Items per page

Supplemental Content

Write to the Help Desk