Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 28

1.

Sperm dysfunction and ciliopathy.

Inaba K, Mizuno K.

Reprod Med Biol. 2015 Oct 14;15(2):77-94. doi: 10.1007/s12522-015-0225-5. eCollection 2016 Apr. Review.

2.

Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex.

Dean AB, Mitchell DR.

Mol Biol Cell. 2015 Oct 15;26(20):3596-605. doi: 10.1091/mbc.E15-05-0317. Epub 2015 Aug 26.

3.

The CSC proteins FAP61 and FAP251 build the basal substructures of radial spoke 3 in cilia.

Urbanska P, Song K, Joachimiak E, Krzemien-Ojak L, Koprowski P, Hennessey T, Jerka-Dziadosz M, Fabczak H, Gaertig J, Nicastro D, Wloga D.

Mol Biol Cell. 2015 Apr 15;26(8):1463-75. doi: 10.1091/mbc.E14-11-1545. Epub 2015 Feb 18.

4.

The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules.

King SM, Patel-King RS.

J Biol Chem. 2015 Mar 20;290(12):7388-401. doi: 10.1074/jbc.M114.616425. Epub 2015 Jan 8.

5.

Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes.

Desai PB, Freshour JR, Mitchell DR.

Cytoskeleton (Hoboken). 2015 Jan;72(1):16-28. doi: 10.1002/cm.21206. Epub 2015 Feb 7.

6.

The ciliary inner dynein arm, I1 dynein, is assembled in the cytoplasm and transported by IFT before axonemal docking.

Viswanadha R, Hunter EL, Yamamoto R, Wirschell M, Alford LM, Dutcher SK, Sale WS.

Cytoskeleton (Hoboken). 2014 Oct;71(10):573-86. doi: 10.1002/cm.21192. Epub 2014 Oct 30.

7.

CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.

Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, Gabriel GC, Lemke KL, Li Y, Pennekamp P, Menchen T, Konert F, Marthin JK, Mans DA, Letteboer SJ, Werner C, Burgoyne T, Westermann C, Rutman A, Carr IM, O'Callaghan C, Moya E, Chung EM; UK10K Consortium, Sheridan E, Nielsen KG, Roepman R, Bartscherer K, Burdine RD, Lo CW, Omran H, Mitchison HM.

Am J Hum Genet. 2014 Sep 4;95(3):257-74. doi: 10.1016/j.ajhg.2014.08.005.

8.

Adenine nucleotide metabolism and a role for AMP in modulating flagellar waveforms in mouse sperm.

Vadnais ML, Cao W, Aghajanian HK, Haig-Ladewig L, Lin AM, Al-Alao O, Gerton GL.

Biol Reprod. 2014 Jun;90(6):128. doi: 10.1095/biolreprod.113.114447. Epub 2014 Apr 16.

9.

The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii.

Dutcher SK.

Cytoskeleton (Hoboken). 2014 Feb;71(2):79-94. doi: 10.1002/cm.21157. Epub 2013 Dec 12. Review.

10.

Chlamydomonas ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly.

Dean AB, Mitchell DR.

Mol Biol Cell. 2013 Dec;24(23):3689-96. doi: 10.1091/mbc.E13-06-0310. Epub 2013 Oct 2.

11.

Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia.

Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, Daniels JM, Emes RD, Wilson R, Hogg C, Scambler PJ, Chung EM; UK10K, Pals G, Mitchison HM.

Am J Hum Genet. 2013 Jan 10;92(1):88-98. doi: 10.1016/j.ajhg.2012.11.002. Epub 2012 Dec 20.

12.

The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data.

Diniz MC, Pacheco AC, Farias KM, de Oliveira DM.

Curr Protein Pept Sci. 2012 Sep;13(6):524-46. Review.

13.

CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms.

Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, Olbrich H, Werner C, Häffner K, Hellman N, Chodhari R, Gupta A, Kramer-Zucker A, Olale F, Burdine RD, Schier AF, O'Callaghan C, Chung EM, Reinhardt R, Mitchison HM, King SM, Omran H, Drummond IA.

Nat Genet. 2012 May 13;44(6):714-9. doi: 10.1038/ng.2277.

14.

Integrated control of axonemal dynein AAA(+) motors.

King SM.

J Struct Biol. 2012 Aug;179(2):222-8. doi: 10.1016/j.jsb.2012.02.013. Epub 2012 Mar 3. Review.

15.

Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation.

Dzeja PP, Chung S, Faustino RS, Behfar A, Terzic A.

PLoS One. 2011 Apr 27;6(4):e19300. doi: 10.1371/journal.pone.0019300.

16.

An outer arm dynein light chain acts in a conformational switch for flagellar motility.

Patel-King RS, King SM.

J Cell Biol. 2009 Jul 27;186(2):283-95. doi: 10.1083/jcb.200905083. Epub 2009 Jul 20.

17.

The Trypanosoma brucei flagellum: moving parasites in new directions.

Ralston KS, Kabututu ZP, Melehani JH, Oberholzer M, Hill KL.

Annu Rev Microbiol. 2009;63:335-62. doi: 10.1146/annurev.micro.091208.073353. Review.

18.

Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing.

Dzeja P, Terzic A.

Int J Mol Sci. 2009 Apr 17;10(4):1729-72. doi: 10.3390/ijms10041729. Review.

19.

Improving gene-finding in Chlamydomonas reinhardtii:GreenGenie2.

Kwan AL, Li L, Kulp DC, Dutcher SK, Stormo GD.

BMC Genomics. 2009 May 7;10:210. doi: 10.1186/1471-2164-10-210.

20.

Combining RNA interference mutants and comparative proteomics to identify protein components and dependences in a eukaryotic flagellum.

Portman N, Lacomble S, Thomas B, McKean PG, Gull K.

J Biol Chem. 2009 Feb 27;284(9):5610-9. doi: 10.1074/jbc.M808859200. Epub 2008 Dec 11.

Supplemental Content

Support Center