Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 24

1.

Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide.

Ippolito JE, Brandenburg MW, Ge X, Crowley JR, Kirmess KM, Som A, D'Avignon DA, Arbeit JM, Achilefu S, Yarasheski KE, Milbrandt J.

PLoS One. 2016 Jul 20;11(7):e0159675. doi: 10.1371/journal.pone.0159675. eCollection 2016.

2.

Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX.

Rea D, Del Vecchio V, Palma G, Barbieri A, Falco M, Luciano A, De Biase D, Perdonà S, Facchini G, Arra C.

Biomed Res Int. 2016;2016:9750795. doi: 10.1155/2016/9750795. Epub 2016 May 18. Review.

3.

SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer.

Zhang X, Coleman IM, Brown LG, True LD, Kollath L, Lucas JM, Lam HM, Dumpit R, Corey E, Chéry L, Lakely B, Higano CS, Montgomery B, Roudier M, Lange PH, Nelson PS, Vessella RL, Morrissey C.

Clin Cancer Res. 2015 Oct 15;21(20):4698-708. doi: 10.1158/1078-0432.CCR-15-0157. Epub 2015 Jun 12.

4.

MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.

Williams RR, Venkatesh I, Pearse DD, Udvadia AJ, Bunge MB.

PLoS One. 2015 Mar 9;10(3):e0118918. doi: 10.1371/journal.pone.0118918. eCollection 2015.

5.

NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas.

Osborne JK, Guerra ML, Gonzales JX, McMillan EA, Minna JD, Cobb MH.

Mol Biol Cell. 2014 Jun;25(11):1782-92. doi: 10.1091/mbc.E13-06-0316. Epub 2014 Apr 9.

6.

A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

Ippolito JE, Piwnica-Worms D.

PLoS One. 2014 Feb 13;9(2):e88667. doi: 10.1371/journal.pone.0088667. eCollection 2014.

7.

FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis.

Webb AE, Pollina EA, Vierbuchen T, Urbán N, Ucar D, Leeman DS, Martynoga B, Sewak M, Rando TA, Guillemot F, Wernig M, Brunet A.

Cell Rep. 2013 Aug 15;4(3):477-91. doi: 10.1016/j.celrep.2013.06.035. Epub 2013 Jul 25.

8.

A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets.

Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F.

Genes Dev. 2011 May 1;25(9):930-45. doi: 10.1101/gad.627811.

9.

A nutrient-sensitive interaction between Sirt1 and HNF-1α regulates Crp expression.

Grimm AA, Brace CS, Wang T, Stormo GD, Imai S.

Aging Cell. 2011 Apr;10(2):305-17. doi: 10.1111/j.1474-9726.2010.00667.x. Epub 2011 Feb 1.

10.

HES6-1 and HES6-2 function through different mechanisms during neuronal differentiation.

Vilas-Boas F, Henrique D.

PLoS One. 2010 Dec 2;5(12):e15459. doi: 10.1371/journal.pone.0015459.

11.

LNCaP Atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer.

Romanuik TL, Wang G, Morozova O, Delaney A, Marra MA, Sadar MD.

BMC Med Genomics. 2010 Sep 24;3:43. doi: 10.1186/1755-8794-3-43.

12.

Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma.

Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML, Abdulkadir SA.

Oncogene. 2010 Apr 29;29(17):2477-87. doi: 10.1038/onc.2010.10. Epub 2010 Feb 8.

13.

Neuroendocrine differentiation in prostate cancer.

Sun Y, Niu J, Huang J.

Am J Transl Res. 2009 Feb 5;1(2):148-62.

14.

Neural stem cell transcriptional networks highlight genes essential for nervous system development.

Southall TD, Brand AH.

EMBO J. 2009 Dec 16;28(24):3799-807. doi: 10.1038/emboj.2009.309.

15.

Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: an in vitro and in vivo analysis.

Furmanski O, Gajavelli S, Lee JW, Collado ME, Jergova S, Sagen J.

J Comp Neurol. 2009 Jul 1;515(1):56-71. doi: 10.1002/cne.22027.

16.

NeuroD1 and Mash1 temporally regulate GnRH receptor gene expression in immortalized mouse gonadotrope cells.

Cherrington BD, Bailey JS, Diaz AL, Mellon PL.

Mol Cell Endocrinol. 2008 Nov 25;295(1-2):106-14. doi: 10.1016/j.mce.2008.07.017. Epub 2008 Aug 6.

17.

The proneural basic helix-loop-helix gene ascl1a is required for retina regeneration.

Fausett BV, Gumerson JD, Goldman D.

J Neurosci. 2008 Jan 30;28(5):1109-17. doi: 10.1523/JNEUROSCI.4853-07.2008.

18.

Comparative analysis of regulatory motif discovery tools for transcription factor binding sites.

Wei W, Yu XD.

Genomics Proteomics Bioinformatics. 2007 May;5(2):131-42.

19.

Computational identification and functional validation of regulatory motifs in cartilage-expressed genes.

Davies SR, Chang LW, Patra D, Xing X, Posey K, Hecht J, Stormo GD, Sandell LJ.

Genome Res. 2007 Oct;17(10):1438-47. Epub 2007 Sep 4.

20.

Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers.

Ippolito JE, Merritt ME, Bäckhed F, Moulder KL, Mennerick S, Manchester JK, Gammon ST, Piwnica-Worms D, Gordon JI.

Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12505-10. Epub 2006 Aug 8.

Supplemental Content

Support Center