Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 61


DNA Barcoding Reveals Habitual Clonal Dominance of Myeloma Plasma Cells in the Bone Marrow Microenvironment.

Hewett DR, Vandyke K, Lawrence DM, Friend N, Noll JE, Geoghegan JM, Croucher PI, Zannettino ACW.

Neoplasia. 2017 Dec;19(12):972-981. doi: 10.1016/j.neo.2017.09.004. Epub 2017 Nov 5.


IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts.

Bolzoni M, Ronchetti D, Storti P, Donofrio G, Marchica V, Costa F, Agnelli L, Toscani D, Vescovini R, Todoerti K, Bonomini S, Sammarelli G, Vecchi A, Guasco D, Accardi F, Palma BD, Gamberi B, Ferrari C, Neri A, Aversa F, Giuliani N.

Haematologica. 2017 Apr;102(4):773-784. doi: 10.3324/haematol.2016.153841. Epub 2017 Jan 5.


MGUS to myeloma: a mysterious gammopathy of underexplored significance.

Dhodapkar MV.

Blood. 2016 Dec 8;128(23):2599-2606. Epub 2016 Oct 13. Review.


Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

Liu H, Liu Z, Du J, He J, Lin P, Amini B, Starbuck MW, Novane N, Shah JJ, Davis RE, Hou J, Gagel RF, Yang J.

Sci Transl Med. 2016 Aug 24;8(353):353ra113. doi: 10.1126/scitranslmed.aad8949.


Low intensity vibration mitigates tumor progression and protects bone quantity and quality in a murine model of myeloma.

Pagnotti GM, Chan ME, Adler BJ, Shroyer KR, Rubin J, Bain SD, Rubin CT.

Bone. 2016 Sep;90:69-79. doi: 10.1016/j.bone.2016.05.014. Epub 2016 Jun 2.


Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma.

Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E.

Oncotarget. 2016 Jun 21;7(25):38927-38945. doi: 10.18632/oncotarget.7792. Review.


Primary myeloma interaction and growth in coculture with healthy donor hematopoietic bone marrow.

Bam R, Khan S, Ling W, Randal SS, Li X, Barlogie B, Edmondson R, Yaccoby S.

BMC Cancer. 2015 Nov 6;15:864. doi: 10.1186/s12885-015-1892-7.


Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.

Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, Giardino R, Fini M, Tassone P, Santoro A, De Leo G, Giavaresi G, Alessandro R.

Oncotarget. 2015 May 30;6(15):13772-89.


MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption.

He Z, He J, Liu Z, Xu J, Yi SF, Liu H, Yang J.

Biochimie. 2014 Nov;106:24-32. doi: 10.1016/j.biochi.2014.07.017. Epub 2014 Jul 24.


Bone marrow stromal cells derived MCP-1 reverses the inhibitory effects of multiple myeloma cells on osteoclastogenesis by upregulating the RANK expression.

Liu Z, Xu J, Li H, Zheng Y, He J, Liu H, Zhong Y, Lu Y, Hong B, Zhang M, Lin P, Du J, Hou J, Qian J, Kwak LW, Yi Q, Yang J.

PLoS One. 2013 Dec 10;8(12):e82453. doi: 10.1371/journal.pone.0082453. eCollection 2013.


Plasma cell disorders in HIV-infected patients: epidemiology and molecular mechanisms.

Coker WJ, Jeter A, Schade H, Kang Y.

Biomark Res. 2013 Feb 4;1(1):8. doi: 10.1186/2050-7771-1-8.


Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease.

Bam R, Ling W, Khan S, Pennisi A, Venkateshaiah SU, Li X, van Rhee F, Usmani S, Barlogie B, Shaughnessy J, Epstein J, Yaccoby S.

Am J Hematol. 2013 Jun;88(6):463-71. doi: 10.1002/ajh.23433. Epub 2013 Mar 28.


NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity.

Venkateshaiah SU, Khan S, Ling W, Bam R, Li X, van Rhee F, Usmani S, Barlogie B, Epstein J, Yaccoby S.

Exp Hematol. 2013 Jun;41(6):547-557.e2. doi: 10.1016/j.exphem.2013.02.008. Epub 2013 Feb 19.


Macrophages in multiple myeloma: emerging concepts and therapeutic implications.

Asimakopoulos F, Kim J, Denu RA, Hope C, Jensen JL, Ollar SJ, Hebron E, Flanagan C, Callander N, Hematti P.

Leuk Lymphoma. 2013 Oct;54(10):2112-21. doi: 10.3109/10428194.2013.778409. Epub 2013 Apr 11. Review.


Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signaling molecules.

Leich E, Weißbach S, Klein HU, Grieb T, Pischimarov J, Stühmer T, Chatterjee M, Steinbrunn T, Langer C, Eilers M, Knop S, Einsele H, Bargou R, Rosenwald A.

Blood Cancer J. 2013 Feb 8;3:e102. doi: 10.1038/bcj.2012.47.


Differential downregulation of telomerase activity by bortezomib in multiple myeloma cells-multiple regulatory pathways in vitro and ex vivo.

Weiss C, Uziel O, Wolach O, Nordenberg J, Beery E, Bulvick S, Kanfer G, Cohen O, Ram R, Bakhanashvili M, Magen-Nativ H, Shilo N, Lahav M.

Br J Cancer. 2012 Nov 20;107(11):1844-52. doi: 10.1038/bjc.2012.460.


Residual malignant and normal plasma cells shortly after high dose melphalan and stem cell transplantation. Highlight of a putative therapeutic window in Multiple Myeloma?

Caraux A, Vincent L, Bouhya S, Quittet P, Moreaux J, Requirand G, Veyrune JL, Olivier G, Cartron G, Rossi JF, Klein B.

Oncotarget. 2012 Nov;3(11):1335-47.


Promise(s) of mesenchymal stem cells as an in vitro model system to depict pre-diabetic/diabetic milieu in WNIN/GR-Ob mutant rats.

Madhira SL, Challa SS, Chalasani M, Nappanveethl G, Bhonde RR, Ajumeera R, Venkatesan V.

PLoS One. 2012;7(10):e48061. doi: 10.1371/journal.pone.0048061. Epub 2012 Oct 29.


PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma.

Zheng Y, Yang J, Qian J, Qiu P, Hanabuchi S, Lu Y, Wang Z, Liu Z, Li H, He J, Lin P, Weber D, Davis RE, Kwak L, Cai Z, Yi Q.

Leukemia. 2013 Mar;27(3):702-10. doi: 10.1038/leu.2012.272. Epub 2012 Sep 21.


Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche?

Noll JE, Williams SA, Purton LE, Zannettino AC.

Blood Cancer J. 2012 Sep 14;2:e91. doi: 10.1038/bcj.2012.38.

Supplemental Content

Support Center