Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 18

2.

A novel adaptive-weighted-average framework for blood glucose prediction.

Wang Y, Wu X, Mo X.

Diabetes Technol Ther. 2013 Oct;15(10):792-801. doi: 10.1089/dia.2013.0104. Epub 2013 Jul 24.

3.

Pilot study of the SPRINT glycemic control protocol in a Hungarian medical intensive care unit.

Benyo B, Illyés A, Némedi NS, Le Compte AJ, Havas A, Kovacs L, Fisk L, Shaw GM, Chase JG.

J Diabetes Sci Technol. 2012 Nov 1;6(6):1464-77.

4.

Using stochastic modelling to identify unusual continuous glucose monitor measurements and behaviour, in newborn infants.

Signal M, Le Compte A, Harris DL, Weston PJ, Harding JE, Chase JG; CHYLD Study Group.

Biomed Eng Online. 2012 Aug 6;11:45. doi: 10.1186/1475-925X-11-45.

5.

Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

Chase JG, Le Compte AJ, Preiser JC, Shaw GM, Penning S, Desaive T.

Ann Intensive Care. 2011 May 5;1(1):11. doi: 10.1186/2110-5820-1-11.

6.

A switching control strategy for the attenuation of blood glucose disturbances.

Markakis MG, Mitsis GD, Papavassilopoulos GP, Ioannou PA, Marmarelis VZ.

Optim Control Appl Methods. 2011;32(2):185-195.

7.

International recommendations for glucose control in adult non diabetic critically ill patients.

Ichai C, Preiser JC; Société Française d'Anesthésie-Réanimation; Société de Réanimation de langue Française; Experts group.

Crit Care. 2010;14(5):R166. doi: 10.1186/cc9258. Epub 2010 Sep 14.

8.

Continuous glucose monitors and the burden of tight glycemic control in critical care: can they cure the time cost?

Signal M, Pretty CG, Chase JG, Le Compte A, Shaw GM.

J Diabetes Sci Technol. 2010 May 1;4(3):625-35.

10.

Hypoglycemia detection in critical care using continuous glucose monitors: an in silico proof of concept analysis.

Pretty CG, Chase JG, Le Compte A, Shaw GM, Signal M.

J Diabetes Sci Technol. 2010 Jan 1;4(1):15-24.

11.

Overview of glycemic control in critical care: relating performance and clinical results.

Geoffrey Chase J, Hann CE, Shaw GM, Wong J, Lin J, Lotz T, Lecompte A, Lonergan T.

J Diabetes Sci Technol. 2007 Jan;1(1):82-91.

12.

The artificial pancreas: how sweet engineering will solve bitter problems.

Klonoff DC.

J Diabetes Sci Technol. 2007 Jan;1(1):72-81.

13.

A benchmark data set for model-based glycemic control in critical care.

Chase JG, LeCompte A, Shaw GM, Blakemore A, Wong J, Lin J, Hann CE.

J Diabetes Sci Technol. 2008 Jul;2(4):584-94.

14.

Glycemia prediction in critically ill patients using an adaptive modeling approach.

Herpe TV, Espinoza M, Haverbeke N, Moor BD, den Berghe GV.

J Diabetes Sci Technol. 2007 May;1(3):348-56.

15.

A Feedforward-Feedback Glucose Control Strategy for Type 1 Diabetes Mellitus.

Marchetti G, Barolo M, Jovanovič L, Zisser H, Seborg DE.

J Process Control. 2008 Feb;18(2):149-162.

16.

Implementation and evaluation of the SPRINT protocol for tight glycaemic control in critically ill patients: a clinical practice change.

Chase JG, Shaw G, Le Compte A, Lonergan T, Willacy M, Wong XW, Lin J, Lotz T, Lee D, Hann C.

Crit Care. 2008;12(2):R49. doi: 10.1186/cc6868. Epub 2008 Apr 16.

17.

Glycemic penalty index for adequately assessing and comparing different blood glucose control algorithms.

Van Herpe T, De Brabanter J, Beullens M, De Moor B, Van den Berghe G.

Crit Care. 2008;12(1):R24. doi: 10.1186/cc6800. Epub 2008 Feb 26.

18.

Design and implementation of GRIP: a computerized glucose control system at a surgical intensive care unit.

Vogelzang M, Zijlstra F, Nijsten MW.

BMC Med Inform Decis Mak. 2005 Dec 19;5:38.

Supplemental Content

Support Center