Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 56

1.

Are body mass index and waist circumference significant predictors of diabetes and prediabetes risk: Results from a population based cohort study.

Haghighatdoost F, Amini M, Feizi A, Iraj B.

World J Diabetes. 2017 Jul 15;8(7):365-373. doi: 10.4239/wjd.v8.i7.365.

2.

Implementation findings from a hybrid III implementation-effectiveness trial of the Diabetes Prevention Program (DPP) in the Veterans Health Administration (VHA).

Damschroder LJ, Reardon CM, AuYoung M, Moin T, Datta SK, Sparks JB, Maciejewski ML, Steinle NI, Weinreb JE, Hughes M, Pinault LF, Xiang XM, Billington C, Richardson CR.

Implement Sci. 2017 Jul 26;12(1):94. doi: 10.1186/s13012-017-0619-3.

3.

Reanalysis and External Validation of a Decision Tree Model for Detecting Unrecognized Diabetes in Rural Chinese Individuals.

Xin Z, Hua L, Wang XH, Zhao D, Yu CG, Ma YH, Zhao L, Cao X, Yang JK.

Int J Endocrinol. 2017;2017:3894870. doi: 10.1155/2017/3894870. Epub 2017 May 30.

4.

Diabetes self-assessment score and the development of diabetes: A 10-year prospective study.

Kim G, Lee YH, Lee BW, Kang ES, Lee IK, Cha BS, Kim DJ.

Medicine (Baltimore). 2017 Jun;96(23):e7067. doi: 10.1097/MD.0000000000007067.

5.
6.

Development and evaluation of a risk score for type 2 diabetes mellitus among middle-aged Chinese rural population based on the RuralDiab Study.

Zhou H, Li Y, Liu X, Xu F, Li L, Yang K, Qian X, Liu R, Bie R, Wang C.

Sci Rep. 2017 Feb 17;7:42685. doi: 10.1038/srep42685.

7.

Dietary Information Improves Model Performance and Predictive Ability of a Noninvasive Type 2 Diabetes Risk Model.

Han T, Tian S, Wang L, Liang X, Cui H, Du S, Na G, Na L, Sun C.

PLoS One. 2016 Nov 16;11(11):e0166206. doi: 10.1371/journal.pone.0166206. eCollection 2016.

8.

Validity of the Finnish Diabetes Risk Score for Detecting Undiagnosed Type 2 Diabetes among General Medical Outpatients in Botswana.

Omech B, Mwita JC, Tshikuka JG, Tsima B, Nkomazna O, Amone-P'Olak K.

J Diabetes Res. 2016;2016:4968350. Epub 2016 Sep 22.

9.

Development and validation of a Diabetes Risk Score for screening undiagnosed diabetes in Sri Lanka (SLDRISK).

Katulanda P, Hill NR, Stratton I, Sheriff R, De Silva SD, Matthews DR.

BMC Endocr Disord. 2016 Jul 25;16(1):42. doi: 10.1186/s12902-016-0124-8.

10.

Evaluation of Non-Laboratory and Laboratory Prediction Models for Current and Future Diabetes Mellitus: A Cross-Sectional and Retrospective Cohort Study.

Ahn CH, Yoon JW, Hahn S, Moon MK, Park KS, Cho YM.

PLoS One. 2016 May 23;11(5):e0156155. doi: 10.1371/journal.pone.0156155. eCollection 2016.

11.

Associations between non-traditional lipid measures and risk for type 2 diabetes mellitus in a Chinese community population: a cross-sectional study.

Song Q, Liu X, Wang A, Wang Y, Zhou Y, Zhou W, Wang X.

Lipids Health Dis. 2016 Apr 5;15:70. doi: 10.1186/s12944-016-0239-y.

12.

New risk-scoring system including non-alcoholic fatty liver disease for predicting incident type 2 diabetes in East China: Shanghai Baosteel Cohort.

Chen GY, Cao HX, Li F, Cai XB, Ao QH, Gao Y, Fan JG.

J Diabetes Investig. 2016 Mar;7(2):206-11. doi: 10.1111/jdi.12395. Epub 2015 Aug 13.

13.

Risk-assessment score for screening diabetes mellitus among Omani adults.

D'Souza MS, Amirtharaj A, Venkatesaperumal R, Isac C, Maroof S.

SAGE Open Med. 2013 Oct 18;1:2050312113508390. doi: 10.1177/2050312113508390. eCollection 2013.

14.
15.

Simple risk score to detect rural Asian Indian (Bangladeshi) adults at high risk for type 2 diabetes.

Bhowmik B, Akhter A, Ali L, Ahmed T, Pathan F, Mahtab H, Khan AK, Hussain A.

J Diabetes Investig. 2015 Nov;6(6):670-7. doi: 10.1111/jdi.12344. Epub 2015 Mar 28.

16.

Toward Big Data Analytics: Review of Predictive Models in Management of Diabetes and Its Complications.

Cichosz SL, Johansen MD, Hejlesen O.

J Diabetes Sci Technol. 2015 Oct 14;10(1):27-34. doi: 10.1177/1932296815611680. Review.

17.

Adapting existing diabetes risk scores for an Asian population: a risk score for detecting undiagnosed diabetes in the Mongolian population.

Dugee O, Janchiv O, Jousilahti P, Sakhiya A, Palam E, Nuorti JP, Peltonen M.

BMC Public Health. 2015 Sep 22;15:938. doi: 10.1186/s12889-015-2298-9.

18.

Validating prediction scales of type 2 diabetes mellitus in Spain: the SPREDIA-2 population-based prospective cohort study protocol.

Salinero-Fort MÁ, de Burgos-Lunar C, Mostaza Prieto J, Lahoz Rallo C, Abánades-Herranz JC, Gómez-Campelo P, Laguna Cuesta F, Estirado De Cabo E, García Iglesias F, González Alegre T, Fernández Puntero B, Montesano Sánchez L, Vicent López D, Cornejo Del Río V, Fernández García PJ, Sabín Rodríguez C, López López S, Patrón Barandío P; SPREDIA-2 Group.

BMJ Open. 2015 Jul 28;5(7):e007195. doi: 10.1136/bmjopen-2014-007195.

19.

Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining.

Habibi S, Ahmadi M, Alizadeh S.

Glob J Health Sci. 2015 Mar 18;7(5):304-10. doi: 10.5539/gjhs.v7n5p304.

20.

Reporting and handling of missing data in predictive research for prevalent undiagnosed type 2 diabetes mellitus: a systematic review.

Masconi KL, Matsha TE, Echouffo-Tcheugui JB, Erasmus RT, Kengne AP.

EPMA J. 2015 Mar 11;6(1):7. doi: 10.1186/s13167-015-0028-0. eCollection 2015.

Supplemental Content

Support Center