Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 16

1.

Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature.

López-Malo M, García-Ríos E, Chiva R, Guillamon JM.

Microb Cell. 2014 Oct 29;1(11):365-375. doi: 10.15698/mic2014.11.174.

2.

Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation.

López-Malo M, García-Rios E, Melgar B, Sanchez MR, Dunham MJ, Guillamón JM.

BMC Genomics. 2015 Jul 22;16:537. doi: 10.1186/s12864-015-1755-2.

3.

Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT.

FEMS Microbiol Lett. 2015 Jan;362(3):1-7. doi: 10.1093/femsle/fnu042. Epub 2014 Dec 4.

4.

Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.

van den Brink J, Canelas AB, van Gulik WM, Pronk JT, Heijnen JJ, de Winde JH, Daran-Lapujade P.

Appl Environ Microbiol. 2008 Sep;74(18):5710-23. doi: 10.1128/AEM.01121-08. Epub 2008 Jul 18.

5.

Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.

Albers E, Larsson C, Andlid T, Walsh MC, Gustafsson L.

Appl Environ Microbiol. 2007 Aug;73(15):4839-48. Epub 2007 Jun 1.

6.

Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine.

Hierro N, Esteve-Zarzoso B, González A, Mas A, Guillamón JM.

Appl Environ Microbiol. 2006 Nov;72(11):7148-55. Epub 2006 Aug 21.

7.

Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.

Brauer MJ, Saldanha AJ, Dolinski K, Botstein D.

Mol Biol Cell. 2005 May;16(5):2503-17. Epub 2005 Mar 9.

8.

Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae.

ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT.

J Bacteriol. 1999 Dec;181(24):7409-13.

9.

Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae.

Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT.

J Bacteriol. 1999 Jan;181(2):396-400.

10.
11.
13.

Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae.

Silljé HH, ter Schure EG, Rommens AJ, Huls PG, Woldringh CL, Verkleij AJ, Boonstra J, Verrips CT.

J Bacteriol. 1997 Nov;179(21):6560-5.

14.

Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins.

Van der Vaart JM, te Biesebeke R, Chapman JW, Toschka HY, Klis FM, Verrips CT.

Appl Environ Microbiol. 1997 Feb;63(2):615-20.

16.

The concentration of ammonia regulates nitrogen metabolism in Saccharomyces cerevisiae.

ter Schure EG, Silljé HH, Verkleij AJ, Boonstra J, Verrips CT.

J Bacteriol. 1995 Nov;177(22):6672-5.

Supplemental Content

Support Center