Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 204

1.

RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.

Fong N, Saldi T, Sheridan RM, Cortazar MA, Bentley DL.

Mol Cell. 2017 May 18;66(4):546-557.e3. doi: 10.1016/j.molcel.2017.04.016. Epub 2017 May 11.

PMID:
28506463
2.

Exploring the Impact of Cleavage and Polyadenylation Factors on Pre-mRNA Splicing Across Eukaryotes.

Lepennetier G, Catania F.

G3 (Bethesda). 2017 Jul 5;7(7):2107-2114. doi: 10.1534/g3.117.041483.

3.

CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion.

Tien JF, Mazloomian A, Cheng SG, Hughes CS, Chow CCT, Canapi LT, Oloumi A, Trigo-Gonzalez G, Bashashati A, Xu J, Chang VC, Shah SP, Aparicio S, Morin GB.

Nucleic Acids Res. 2017 Jun 20;45(11):6698-6716. doi: 10.1093/nar/gkx187.

4.

Integration of mRNP formation and export.

Björk P, Wieslander L.

Cell Mol Life Sci. 2017 Aug;74(16):2875-2897. doi: 10.1007/s00018-017-2503-3. Epub 2017 Mar 17. Review.

5.

CDK regulation of transcription by RNAP II: Not over 'til it's over?

Fisher RP.

Transcription. 2017 Mar 15;8(2):81-90. doi: 10.1080/21541264.2016.1268244. Epub 2016 Dec 22.

PMID:
28005463
6.

Cdk7 mediates RPB1-driven mRNA synthesis in Toxoplasma gondii.

Deshmukh AS, Mitra P, Maruthi M.

Sci Rep. 2016 Oct 19;6:35288. doi: 10.1038/srep35288.

7.

Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors.

Zhang T, Kwiatkowski N, Olson CM, Dixon-Clarke SE, Abraham BJ, Greifenberg AK, Ficarro SB, Elkins JM, Liang Y, Hannett NM, Manz T, Hao M, Bartkowiak B, Greenleaf AL, Marto JA, Geyer M, Bullock AN, Young RA, Gray NS.

Nat Chem Biol. 2016 Oct;12(10):876-84. doi: 10.1038/nchembio.2166. Epub 2016 Aug 29.

8.

Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer.

Kurimchak AM, Shelton C, Duncan KE, Johnson KJ, Brown J, O'Brien S, Gabbasov R, Fink LS, Li Y, Lounsbury N, Abou-Gharbia M, Childers WE, Connolly DC, Chernoff J, Peterson JR, Duncan JS.

Cell Rep. 2016 Aug 2;16(5):1273-86. doi: 10.1016/j.celrep.2016.06.091. Epub 2016 Jul 21.

9.

The Nrd1-like protein Seb1 coordinates cotranscriptional 3' end processing and polyadenylation site selection.

Lemay JF, Marguerat S, Larochelle M, Liu X, van Nues R, Hunyadkürti J, Hoque M, Tian B, Granneman S, Bähler J, Bachand F.

Genes Dev. 2016 Jul 1;30(13):1558-72. doi: 10.1101/gad.280222.116.

10.

Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II.

Lu X, Zhu X, Li Y, Liu M, Yu B, Wang Y, Rao M, Yang H, Zhou K, Wang Y, Chen Y, Chen M, Zhuang S, Chen LF, Liu R, Chen R.

Nucleic Acids Res. 2016 Aug 19;44(14):6853-67. doi: 10.1093/nar/gkw571. Epub 2016 Jun 28.

11.

Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation.

Hunter GO, Fox MJ, Smith-Kinnaman WR, Gogol M, Fleharty B, Mosley AL.

Mol Cell Biol. 2016 Aug 12;36(17):2236-45. doi: 10.1128/MCB.00870-15. Print 2016 Sep 1.

12.

Processing and transcriptome expansion at the mRNA 3' end in health and disease: finding the right end.

Ogorodnikov A, Kargapolova Y, Danckwardt S.

Pflugers Arch. 2016 Jun;468(6):993-1012. doi: 10.1007/s00424-016-1828-3. Epub 2016 May 25. Review.

13.

Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.

Saldi T, Cortazar MA, Sheridan RM, Bentley DL.

J Mol Biol. 2016 Jun 19;428(12):2623-2635. doi: 10.1016/j.jmb.2016.04.017. Epub 2016 Apr 20. Review.

14.

The point of no return: The poly(A)-associated elongation checkpoint.

Tellier M, Ferrer-Vicens I, Murphy S.

RNA Biol. 2016;13(3):265-71. doi: 10.1080/15476286.2016.1142037. Epub 2016 Feb 6.

15.

Dephosphorylating eukaryotic RNA polymerase II.

Mayfield JE, Burkholder NT, Zhang YJ.

Biochim Biophys Acta. 2016 Apr;1864(4):372-87. doi: 10.1016/j.bbapap.2016.01.007. Epub 2016 Jan 15. Review.

16.

Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development.

Chen F, Zhou Y, Qi YB, Khivansara V, Li H, Chun SY, Kim JK, Fu XD, Jin Y.

Genes Dev. 2015 Nov 15;29(22):2377-90. doi: 10.1101/gad.266650.115.

17.

Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation.

Fusby B, Kim S, Erickson B, Kim H, Peterson ML, Bentley DL.

Mol Cell Biol. 2015 Nov 2;36(2):295-303. doi: 10.1128/MCB.00898-15.

18.

Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD.

Koga M, Hayashi M, Kaida D.

Nucleic Acids Res. 2015 Sep 30;43(17):8258-67. doi: 10.1093/nar/gkv740. Epub 2015 Jul 21.

19.

Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.

Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, Proudfoot NJ.

Cell. 2015 Apr 23;161(3):526-540. doi: 10.1016/j.cell.2015.03.027.

20.

Quality control of transcription start site selection by nonsense-mediated-mRNA decay.

Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A.

Elife. 2015 Apr 23;4. doi: 10.7554/eLife.06722.

Supplemental Content

Support Center