Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 185

1.

Dorsal Raphe Serotonergic Neurons Control Intertemporal Choice under Trade-off.

Xu S, Das G, Hueske E, Tonegawa S.

Curr Biol. 2017 Oct 23;27(20):3111-3119.e3. doi: 10.1016/j.cub.2017.09.008. Epub 2017 Oct 5.

PMID:
28988863
2.

Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus.

Saha D, Sun W, Li C, Nizampatnam S, Padovano W, Chen Z, Chen A, Altan E, Lo R, Barbour DL, Raman B.

Nat Commun. 2017 May 23;8:15413. doi: 10.1038/ncomms15413.

3.

Differences in peripheral sensory input to the olfactory bulb between male and female mice.

Kass MD, Czarnecki LA, Moberly AH, McGann JP.

Sci Rep. 2017 Apr 26;7:45851. doi: 10.1038/srep45851.

4.

Theta Oscillations Rapidly Convey Odor-Specific Content in Human Piriform Cortex.

Jiang H, Schuele S, Rosenow J, Zelano C, Parvizi J, Tao JX, Wu S, Gottfried JA.

Neuron. 2017 Apr 5;94(1):207-219.e4. doi: 10.1016/j.neuron.2017.03.021.

PMID:
28384472
5.

Task-Dependent Behavioral Dynamics Make the Case for Temporal Integration in Multiple Strategies during Odor Processing.

Frederick DE, Brown A, Tacopina S, Mehta N, Vujovic M, Brim E, Amina T, Fixsen B, Kay LM.

J Neurosci. 2017 Apr 19;37(16):4416-4426. doi: 10.1523/JNEUROSCI.1797-16.2017. Epub 2017 Mar 23.

6.

Dopamine reward prediction errors reflect hidden-state inference across time.

Starkweather CK, Babayan BM, Uchida N, Gershman SJ.

Nat Neurosci. 2017 Apr;20(4):581-589. doi: 10.1038/nn.4520. Epub 2017 Mar 6.

7.

Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding.

Tantirigama ML, Huang HH, Bekkers JM.

Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2407-2412. doi: 10.1073/pnas.1620939114. Epub 2017 Feb 14.

8.

The Rate of Concentration Change and How It Determines the Resolving Power of Olfactory Receptor Neurons.

Tichy H, Hellwig M, Zopf LM.

Front Physiol. 2016 Dec 27;7:645. doi: 10.3389/fphys.2016.00645. eCollection 2016.

9.

Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice.

Menegas W, Babayan BM, Uchida N, Watabe-Uchida M.

Elife. 2017 Jan 5;6. pii: e21886. doi: 10.7554/eLife.21886.

10.

Preservation of Essential Odor-Guided Behaviors and Odor-Based Reversal Learning after Targeting Adult Brain Serotonin Synthesis.

Carlson KS, Whitney MS, Gadziola MA, Deneris ES, Wesson DW.

eNeuro. 2016 Nov 17;3(5). pii: ENEURO.0257-16.2016. eCollection 2016 Sep-Oct.

11.

Midbrain dopamine neurons signal aversion in a reward-context-dependent manner.

Matsumoto H, Tian J, Uchida N, Watabe-Uchida M.

Elife. 2016 Oct 19;5. pii: e17328. doi: 10.7554/eLife.17328.

12.

Balancing the Robustness and Efficiency of Odor Representations during Learning.

Chu MW, Li WL, Komiyama T.

Neuron. 2016 Oct 5;92(1):174-186. doi: 10.1016/j.neuron.2016.09.004. Epub 2016 Sep 22.

13.

Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb.

Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M.

Front Comput Neurosci. 2016 Jul 14;10:67. doi: 10.3389/fncom.2016.00067. eCollection 2016.

14.

Mesencephalic representations of recent experience influence decision making.

Thompson JA, Costabile JD, Felsen G.

Elife. 2016 Jul 25;5. pii: e16572. doi: 10.7554/eLife.16572.

15.

Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.

Frederick DE, Brown A, Brim E, Mehta N, Vujovic M, Kay LM.

J Neurosci. 2016 Jul 20;36(29):7750-67. doi: 10.1523/JNEUROSCI.0569-16.2016.

16.

Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination.

Gödde K, Gschwend O, Puchkov D, Pfeffer CK, Carleton A, Jentsch TJ.

Nat Commun. 2016 Jul 8;7:12043. doi: 10.1038/ncomms12043.

17.

Basal ganglia output reflects internally-specified movements.

Lintz MJ, Felsen G.

Elife. 2016 Jul 5;5. pii: e13833. doi: 10.7554/eLife.13833.

18.

Circuits in the Ventral Medulla That Phase-Lock Motoneurons for Coordinated Sniffing and Whisking.

DeschĂȘnes M, Kurnikova A, Elbaz M, Kleinfeld D.

Neural Plast. 2016;2016:7493048. doi: 10.1155/2016/7493048. Epub 2016 May 18. Review.

19.

Neurocomputational Nosology: Malfunctions of Models and Mechanisms.

Barack DL, Platt ML.

Front Psychol. 2016 May 3;7:602. doi: 10.3389/fpsyg.2016.00602. eCollection 2016. Review.

20.

Demixed principal component analysis of neural population data.

Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, Mainen ZF, Qi XL, Romo R, Uchida N, Machens CK.

Elife. 2016 Apr 12;5. pii: e10989. doi: 10.7554/eLife.10989.

Supplemental Content

Support Center