Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 17

1.

Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development.

Di Bonito M, Studer M.

Front Neural Circuits. 2017 Apr 19;11:18. doi: 10.3389/fncir.2017.00018. eCollection 2017. Review.

2.

Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear.

Zhang KD, Coate TM.

Semin Cell Dev Biol. 2017 May;65:80-87. doi: 10.1016/j.semcdb.2016.09.017. Epub 2016 Oct 17. Review.

PMID:
27760385
3.

Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons.

Goyer D, Kurth S, Gillet C, Keine C, Rübsamen R, Kuenzel T.

eNeuro. 2016 Sep 26;3(5). pii: ENEURO.0186-16.2016. eCollection 2016 Sep-Oct.

4.

Type II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice.

Maison S, Liberman LD, Liberman MC.

eNeuro. 2016 Aug 17;3(4). pii: ENEURO.0207-16.2016. doi: 10.1523/ENEURO.0207-16.2016. eCollection 2016 Jul-Aug.

5.

Functional Significance of Medial Olivocochlear System Morphology in the Mouse Cochlea.

Park SY, Park JM, Back SA, Yeo SW, Park SN.

Clin Exp Otorhinolaryngol. 2017 Jun;10(2):137-142. doi: 10.21053/ceo.2016.00444. Epub 2016 Jul 28.

6.

Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier.

Froud KE, Wong AC, Cederholm JM, Klugmann M, Sandow SL, Julien JP, Ryan AF, Housley GD.

Nat Commun. 2015 May 12;6:7115. doi: 10.1038/ncomms8115.

7.

Hyperactivity in the medial olivocochlear efferent system is a common feature of tinnitus and hyperacusis in humans.

Sturm JJ, Weisz CJ.

J Neurophysiol. 2015 Nov;114(5):2551-4. doi: 10.1152/jn.00948.2014. Epub 2015 Feb 18.

8.

Effect of human auditory efferent feedback on cochlear gain and compression.

Yasin I, Drga V, Plack CJ.

J Neurosci. 2014 Nov 12;34(46):15319-26. doi: 10.1523/JNEUROSCI.1043-14.2014.

9.

Time course of the suppression effect on transient evoked otoacoustic emissions by prolonged contralateral acoustic stimulation.

Kang HW, Shim HJ, Song SJ, Lee SH, Yoon SW.

Korean J Audiol. 2012 Dec;16(3):114-9. doi: 10.7874/kja.2012.16.3.114. Epub 2012 Dec 18.

10.

Identification of inputs to olivocochlear neurons using transneuronal labeling with pseudorabies virus (PRV).

Brown MC, Mukerji S, Drottar M, Windsor AM, Lee DJ.

J Assoc Res Otolaryngol. 2013 Oct;14(5):703-17. doi: 10.1007/s10162-013-0400-5. Epub 2013 Jun 1.

12.

Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.

Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franzè AM, Puelles L, Rijli FM, Studer M.

PLoS Genet. 2013;9(2):e1003249. doi: 10.1371/journal.pgen.1003249. Epub 2013 Feb 7.

13.

Frequency tuning of the contralateral medial olivocochlear reflex in humans.

Zhao W, Dhar S.

J Neurophysiol. 2012 Jul;108(1):25-30. doi: 10.1152/jn.00051.2012. Epub 2012 Mar 28.

14.

Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse.

Darrow KN, Benson TE, Brown MC.

J Comp Neurol. 2012 May 1;520(7):1365-75. doi: 10.1002/cne.22797.

15.

Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways.

Bledsoe SC Jr, Koehler S, Tucci DL, Zhou J, Le Prell C, Shore SE.

J Neurophysiol. 2009 Aug;102(2):886-900. doi: 10.1152/jn.91003.2008. Epub 2009 May 20.

16.

Dendrites of medial olivocochlear neurons in mouse.

Brown MC, Levine JL.

Neuroscience. 2008 Jun 12;154(1):147-59. doi: 10.1016/j.neuroscience.2007.12.045. Epub 2008 Jan 16.

17.

Supplemental Content

Support Center