Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 29

1.

Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster.

Bespyatykh J, Shitikov E, Butenko I, Altukhov I, Alexeev D, Mokrousov I, Dogonadze M, Zhuravlev V, Yablonsky P, Ilina E, Govorun V.

Sci Rep. 2016 Jun 30;6:28985. doi: 10.1038/srep28985.

2.

Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis.

Zühlke D, Dörries K, Bernhardt J, Maaß S, Muntel J, Liebscher V, Pané-Farré J, Riedel K, Lalk M, Völker U, Engelmann S, Becher D, Fuchs S, Hecker M.

Sci Rep. 2016 Jun 27;6:28172. doi: 10.1038/srep28172.

3.

Comparative Proteomic Analyses of Avirulent, Virulent, and Clinical Strains of Mycobacterium tuberculosis Identify Strain-specific Patterns.

Jhingan GD, Kumari S, Jamwal SV, Kalam H, Arora D, Jain N, Kumaar LK, Samal A, Rao KV, Kumar D, Nandicoori VK.

J Biol Chem. 2016 Jul 1;291(27):14257-73. doi: 10.1074/jbc.M115.666123. Epub 2016 May 5.

4.

Selective Capture of Transcribed Sequences: A Promising Approach for Investigating Bacterium-Insect Interactions.

An R, Grewal PS.

Insects. 2012 Mar 2;3(1):295-306. doi: 10.3390/insects3010295. Review.

5.

Using a Label Free Quantitative Proteomics Approach to Identify Changes in Protein Abundance in Multidrug-Resistant Mycobacterium tuberculosis.

Phong TQ, Ha do TT, Volker U, Hammer E.

Indian J Microbiol. 2015 Jun;55(2):219-30. doi: 10.1007/s12088-015-0511-2. Epub 2015 Jan 18.

6.

Comparison of the membrane proteome of virulent Mycobacterium tuberculosis and the attenuated Mycobacterium bovis BCG vaccine strain by label-free quantitative proteomics.

Gunawardena HP, Feltcher ME, Wrobel JA, Gu S, Braunstein M, Chen X.

J Proteome Res. 2013 Dec 6;12(12):5463-74. doi: 10.1021/pr400334k. Epub 2013 Oct 28.

7.

A chemical proteomics approach to profiling the ATP-binding proteome of Mycobacterium tuberculosis.

Wolfe LM, Veeraraghavan U, Idicula-Thomas S, Schürer S, Wennerberg K, Reynolds R, Besra GS, Dobos KM.

Mol Cell Proteomics. 2013 Jun;12(6):1644-60. doi: 10.1074/mcp.M112.025635. Epub 2013 Mar 5.

8.

Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis.

Sharma P, Kumar B, Gupta Y, Singhal N, Katoch VM, Venkatesan K, Bisht D.

Proteome Sci. 2010 Nov 18;8:59. doi: 10.1186/1477-5956-8-59.

9.

Proteomics: challenges, techniques and possibilities to overcome biological sample complexity.

Chandramouli K, Qian PY.

Hum Genomics Proteomics. 2009 Dec 8;2009. pii: 239204. doi: 10.4061/2009/239204.

10.

Proteomic definition of the cell wall of Mycobacterium tuberculosis.

Wolfe LM, Mahaffey SB, Kruh NA, Dobos KM.

J Proteome Res. 2010 Nov 5;9(11):5816-26. doi: 10.1021/pr1005873. Epub 2010 Sep 29.

11.

Descriptive proteomic analysis shows protein variability between closely related clinical isolates of Mycobacterium tuberculosis.

Mehaffy C, Hess A, Prenni JE, Mathema B, Kreiswirth B, Dobos KM.

Proteomics. 2010 May;10(10):1966-84. doi: 10.1002/pmic.200900836.

12.

Immunoproteomic identification of human T cell antigens of Mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients.

Deenadayalan A, Heaslip D, Rajendiran AA, Velayudham BV, Frederick S, Yang HL, Dobos K, Belisle JT, Raja A.

Mol Cell Proteomics. 2010 Mar;9(3):538-49. doi: 10.1074/mcp.M900299-MCP200. Epub 2009 Dec 22.

13.

Finding one's way in proteomics: a protein species nomenclature.

Schlüter H, Apweiler R, Holzhütter HG, Jungblut PR.

Chem Cent J. 2009 Sep 9;3:11. doi: 10.1186/1752-153X-3-11.

14.

Peptides of a novel Mycobacterium tuberculosis-specific cell wall protein for immunodiagnosis of tuberculosis.

Singh KK, Sharma N, Vargas D, Liu Z, Belisle JT, Potharaju V, Wanchu A, Behera D, Laal S.

J Infect Dis. 2009 Aug 15;200(4):571-81. doi: 10.1086/603539.

15.

Comparison of two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the Shigella dysenteriae proteome.

Kuntumalla S, Braisted JC, Huang ST, Parmar PP, Clark DJ, Alami H, Zhang Q, Donohue-Rolfe A, Tzipori S, Fleischmann RD, Peterson SN, Pieper R.

Proteome Sci. 2009 Jun 29;7:22. doi: 10.1186/1477-5956-7-22.

16.

A Mycobacterium tuberculosis ligand-binding Mn/Fe protein reveals a new cofactor in a remodeled R2-protein scaffold.

Andersson CS, Högbom M.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5633-8. doi: 10.1073/pnas.0812971106. Epub 2009 Mar 24.

17.

Assembling proteomics data as a prerequisite for the analysis of large scale experiments.

Schmidt F, Schmid M, Thiede B, Pleissner KP, Böhme M, Jungblut PR.

Chem Cent J. 2009 Jan 23;3:2. doi: 10.1186/1752-153X-3-2.

18.

Quantitative proteomic profiling of host-pathogen interactions: the macrophage response to Mycobacterium tuberculosis lipids.

Shui W, Gilmore SA, Sheu L, Liu J, Keasling JD, Bertozzi CR.

J Proteome Res. 2009 Jan;8(1):282-9. doi: 10.1021/pr800422e.

19.

Identification of a copper-binding metallothionein in pathogenic mycobacteria.

Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C.

Nat Chem Biol. 2008 Oct;4(10):609-16. doi: 10.1038/nchembio.109. Epub 2008 Aug 24.

20.

Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins.

McDonough JA, McCann JR, Tekippe EM, Silverman JS, Rigel NW, Braunstein M.

J Bacteriol. 2008 Oct;190(19):6428-38. doi: 10.1128/JB.00749-08. Epub 2008 Jul 25.

Supplemental Content

Support Center