Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 25

1.

Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Natkanska U, Kwiatkowska A, Rawska E, Potocki L, Kuna E, Panek A, Lewinska A, Wnuk M.

Cell Stress Chaperones. 2016 Sep;21(5):849-64. doi: 10.1007/s12192-016-0710-8. Epub 2016 Jun 14.

2.

Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Kwiatkowska A, Potocki L, Rawska E, Pabian S, Kaplan J, Lewinska A, Wnuk M.

Oncotarget. 2016 May 24;7(21):29958-76. doi: 10.18632/oncotarget.8673.

3.

Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.

Deregowska A, Skoneczny M, Adamczyk J, Kwiatkowska A, Rawska E, Skoneczna A, Lewinska A, Wnuk M.

Oncotarget. 2015 Oct 13;6(31):30650-63. doi: 10.18632/oncotarget.5594.

4.

A Genetic Incompatibility Accelerates Adaptation in Yeast.

Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE.

PLoS Genet. 2015 Jul 31;11(7):e1005407. doi: 10.1371/journal.pgen.1005407. eCollection 2015 Jul.

5.

Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes.

Chakraborty S, Ghosh TC.

Genome Biol Evol. 2013;5(7):1366-75. doi: 10.1093/gbe/evt096.

6.

Evolutionary genomics of transposable elements in Saccharomyces cerevisiae.

Carr M, Bensasson D, Bergman CM.

PLoS One. 2012;7(11):e50978. doi: 10.1371/journal.pone.0050978. Epub 2012 Nov 30.

7.

The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F.

PLoS One. 2010 Aug 12;5(8):e12143. doi: 10.1371/journal.pone.0012143.

8.

Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.

Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S, Dequin S.

Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16333-8. doi: 10.1073/pnas.0904673106. Epub 2009 Sep 9.

9.
10.

Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.

Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM.

Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12825-30. Epub 2007 Jul 25.

11.

Sequence diversity, reproductive isolation and species concepts in Saccharomyces.

Liti G, Barton DB, Louis EJ.

Genetics. 2006 Oct;174(2):839-50. Epub 2006 Sep 1.

12.

Comparative genomic hybridization provides new insights into the molecular taxonomy of the Saccharomyces sensu stricto complex.

Edwards-Ingram LC, Gent ME, Hoyle DC, Hayes A, Stateva LI, Oliver SG.

Genome Res. 2004 Jun;14(6):1043-51.

13.

Population genetics of the wild yeast Saccharomyces paradoxus.

Johnson LJ, Koufopanou V, Goddard MR, Hetherington R, Schäfer SM, Burt A.

Genetics. 2004 Jan;166(1):43-52.

14.
15.

Improved properties of baker's yeast mutants resistant to 2-deoxy-D-glucose.

Rincón AM, Codón AC, Castrejón F, Benítez T.

Appl Environ Microbiol. 2001 Sep;67(9):4279-85.

16.
17.

Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains.

Nadal D, Carro D, Fernández-Larrea J, Piña B.

Appl Environ Microbiol. 1999 Apr;65(4):1688-95.

18.

Lysine-overproducing mutants of Saccharomyces cerevisiae baker's yeast isolated in continuous culture.

Gasent-Ramírez JM, Benítez T.

Appl Environ Microbiol. 1997 Dec;63(12):4800-6.

19.
20.

The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid.

Hunter N, Chambers SR, Louis EJ, Borts RH.

EMBO J. 1996 Apr 1;15(7):1726-33.

Supplemental Content

Support Center