Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Down Modulation of Host Immune Response by Amino Acid Repeats Present in a Trypanosoma cruzi Ribosomal Antigen.

Toro Acevedo CA, Valente BM, Burle-Caldas GA, Galvão-Filho B, Santiago HDC, Esteves Arantes RM, Junqueira C, Gazzinelli RT, Roffê E, Teixeira SMR.

Front Microbiol. 2017 Nov 10;8:2188. doi: 10.3389/fmicb.2017.02188. eCollection 2017.

2.

Canine Macrophage DH82 Cell Line As a Model to Study Susceptibility to Trypanosoma cruzi Infection.

Mendonça PHB, da Rocha RFDB, Moraes JBB, LaRocque-de-Freitas IF, Logullo J, Morrot A, Nunes MP, Freire-de-Lima CG, Decote-Ricardo D.

Front Immunol. 2017 May 31;8:604. doi: 10.3389/fimmu.2017.00604. eCollection 2017.

3.

Atypical Manifestations of Cutaneous Leishmaniasis in a Region Endemic for Leishmania braziliensis: Clinical, Immunological and Parasitological Aspects.

Guimarães LH, Queiroz A, Silva JA, Silva SC, Magalhães V, Lago EL, Machado PR, Bacellar O, Wilson ME, Beverley SM, Carvalho EM, Schriefer A.

PLoS Negl Trop Dis. 2016 Dec 1;10(12):e0005100. doi: 10.1371/journal.pntd.0005100. eCollection 2016 Dec.

5.

Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?

Morrot A, Villar SR, González FB, Pérez AR.

Front Microbiol. 2016 May 23;7:704. doi: 10.3389/fmicb.2016.00704. eCollection 2016. Review.

6.

Inflammation Enhances the Risks of Stroke and Death in Chronic Chagas Disease Patients.

Guedes PM, de Andrade CM, Nunes DF, de Sena Pereira N, Queiroga TB, Machado-Coelho GL, Nascimento MS, Do-Valle-Matta MA, da Câmara AC, Chiari E, Galvão LM.

PLoS Negl Trop Dis. 2016 Apr 26;10(4):e0004669. doi: 10.1371/journal.pntd.0004669. eCollection 2016 Apr.

8.

Gastrointestinal Parasites and the Neural Control of Gut Functions.

Halliez MC, Buret AG.

Front Cell Neurosci. 2015 Nov 25;9:452. doi: 10.3389/fncel.2015.00452. eCollection 2015. Review.

9.

Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi.

Silva RR, Mariante RM, Silva AA, dos Santos AL, Roffê E, Santiago H, Gazzinelli RT, Lannes-Vieira J.

PLoS One. 2015 Feb 19;10(2):e0118600. doi: 10.1371/journal.pone.0118600. eCollection 2015.

10.

Trypanosoma cruzi infection in genetically selected mouse lines: genetic linkage with quantitative trait locus controlling antibody response.

Vorraro F, Cabrera WH, Ribeiro OG, Jensen JR, De Franco M, Ibañez OM, Starobinas N.

Mediators Inflamm. 2014;2014:952857. doi: 10.1155/2014/952857. Epub 2014 Aug 13.

11.

The acute phase of Trypanosoma cruzi infection is attenuated in 5-lipoxygenase-deficient mice.

Canavaci AM, Sorgi CA, Martins VP, Morais FR, de Sousa ÉV, Trindade BC, Cunha FQ, Rossi MA, Aronoff DM, Faccioli LH, Nomizo A.

Mediators Inflamm. 2014;2014:893634. doi: 10.1155/2014/893634. Epub 2014 Aug 3.

12.

Chagas disease: still many unsolved issues.

Álvarez JM, Fonseca R, Borges da Silva H, Marinho CR, Bortoluci KR, Sardinha LR, Epiphanio S, D'Império Lima MR.

Mediators Inflamm. 2014;2014:912965. doi: 10.1155/2014/912965. Epub 2014 Jun 29. Review.

13.

Nitro/nitrosyl-ruthenium complexes are potent and selective anti-Trypanosoma cruzi agents causing autophagy and necrotic parasite death.

Bastos TM, Barbosa MI, da Silva MM, da C Júnior JW, Meira CS, Guimaraes ET, Ellena J, Moreira DR, Batista AA, Soares MB.

Antimicrob Agents Chemother. 2014 Oct;58(10):6044-55. doi: 10.1128/AAC.02765-14. Epub 2014 Aug 4.

14.

Inhibition of cyclooxygenase-1 and cyclooxygenase-2 impairs Trypanosoma cruzi entry into cardiac cells and promotes differential modulation of the inflammatory response.

Malvezi AD, Panis C, da Silva RV, de Freitas RC, Lovo-Martins MI, Tatakihara VL, Zanluqui NG, Neto EC, Goldenberg S, Bordignon J, Yamada-Ogatta SF, Martins-Pinge MC, Cecchini R, Pinge-Filho P.

Antimicrob Agents Chemother. 2014 Oct;58(10):6157-64. doi: 10.1128/AAC.02752-14. Epub 2014 Aug 4.

15.

Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation.

de Almeida-Leite CM, Silva IC, Galvão LM, Arantes RM.

Mem Inst Oswaldo Cruz. 2014 Jul;109(4):459-65.

16.

Immunopathological aspects of experimental Trypanosoma cruzi reinfections.

Reis Machado J, Silva MV, Borges DC, da Silva CA, Ramirez LE, dos Reis MA, Castellano LR, Rodrigues V, Rodrigues DB.

Biomed Res Int. 2014;2014:648715. doi: 10.1155/2014/648715. Epub 2014 Jun 24.

17.

Analysis of the dynamics of infiltrating CD4(+) T cell subsets in the heart during experimental Trypanosoma cruzi infection.

Sanoja C, Carbajosa S, Fresno M, Gironès N.

PLoS One. 2013 Jun 11;8(6):e65820. doi: 10.1371/journal.pone.0065820. Print 2013.

18.

A parent-of-origin effect determines the susceptibility of a non-informative F1 population to Trypanosoma cruzi infection in vivo.

Silva GK, Cunha LD, Horta CV, Silva AL, Gutierrez FR, Silva JS, Zamboni DS.

PLoS One. 2013;8(2):e56347. doi: 10.1371/journal.pone.0056347. Epub 2013 Feb 11.

19.

Lipid bodies: inflammatory organelles implicated in host-Trypanosoma cruzi interplay during innate immune responses.

D'Avila H, Toledo DA, Melo RC.

Mediators Inflamm. 2012;2012:478601. doi: 10.1155/2012/478601. Epub 2012 Apr 30.

20.

IFN-γ plays a unique role in protection against low virulent Trypanosoma cruzi strain.

Rodrigues AA, Saosa JS, da Silva GK, Martins FA, da Silva AA, Souza Neto CP, Horta CV, Zamboni DS, da Silva JS, Ferro EA, da Silva CV.

PLoS Negl Trop Dis. 2012;6(4):e1598. doi: 10.1371/journal.pntd.0001598. Epub 2012 Apr 3.

Supplemental Content

Support Center