Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 46

1.

Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation.

Tang MY, Vranas M, Krahn AI, Pundlik S, Trempe JF, Fon EA.

Nat Commun. 2017 Mar 9;8:14697. doi: 10.1038/ncomms14697.

2.

The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

Bento CF, Ashkenazi A, Jimenez-Sanchez M, Rubinsztein DC.

Nat Commun. 2016 Jun 9;7:11803. doi: 10.1038/ncomms11803.

3.

Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy.

Moore AS, Holzbaur EL.

Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3349-58. doi: 10.1073/pnas.1523810113. Epub 2016 May 31.

4.

Parkin Regulation and Neurodegenerative Disorders.

Zhang CW, Hang L, Yao TP, Lim KL.

Front Aging Neurosci. 2016 Jan 12;7:248. doi: 10.3389/fnagi.2015.00248. eCollection 2015. Review.

5.

MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5.

Nezich CL, Wang C, Fogel AI, Youle RJ.

J Cell Biol. 2015 Aug 3;210(3):435-50. doi: 10.1083/jcb.201501002.

6.

Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation.

Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K.

Nat Commun. 2015 Jul 6;6:7527. doi: 10.1038/ncomms8527.

7.

Splicing: is there an alternative contribution to Parkinson's disease?

La Cognata V, D'Agata V, Cavalcanti F, Cavallaro S.

Neurogenetics. 2015 Oct;16(4):245-63. doi: 10.1007/s10048-015-0449-x. Epub 2015 May 16. Review.

8.

Pathologic and therapeutic implications for the cell biology of parkin.

Charan RA, LaVoie MJ.

Mol Cell Neurosci. 2015 May;66(Pt A):62-71. doi: 10.1016/j.mcn.2015.02.008. Epub 2015 Feb 17. Review.

9.

The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease.

Pickrell AM, Youle RJ.

Neuron. 2015 Jan 21;85(2):257-73. doi: 10.1016/j.neuron.2014.12.007. Review.

10.

STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson's disease.

Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC.

Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1202-7. doi: 10.1073/pnas.1417423112. Epub 2015 Jan 12.

11.

PMI: a ΔΨm independent pharmacological regulator of mitophagy.

East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H, Schaap M, Fowkes A, Wells G, Campanella M.

Chem Biol. 2014 Nov 20;21(11):1585-96. doi: 10.1016/j.chembiol.2014.09.019.

12.

YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress.

Rainbolt TK, Saunders JM, Wiseman RL.

EMBO Rep. 2015 Jan;16(1):97-106. doi: 10.15252/embr.201438976. Epub 2014 Nov 27.

13.

Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation.

Wong YC, Holzbaur EL.

Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4439-48. doi: 10.1073/pnas.1405752111. Epub 2014 Oct 7.

14.

Alternative splicing generates different parkin protein isoforms: evidences in human, rat, and mouse brain.

Scuderi S, La Cognata V, Drago F, Cavallaro S, D'Agata V.

Biomed Res Int. 2014;2014:690796. doi: 10.1155/2014/690796. Epub 2014 Jul 16.

15.

Increasing the Coding Potential of Genomes Through Alternative Splicing: The Case of PARK2 Gene.

La Cognata V, Iemmolo R, D'Agata V, Scuderi S, Drago F, Zappia M, Cavallaro S.

Curr Genomics. 2014 Jun;15(3):203-16. doi: 10.2174/1389202915666140426003342.

16.

Lipid dysfunction and pathogenesis of multiple system atrophy.

Bleasel JM, Wong JH, Halliday GM, Kim WS.

Acta Neuropathol Commun. 2014 Feb 7;2:15. doi: 10.1186/2051-5960-2-15. Review.

17.

Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants.

Klein P, Müller-Rischart AK, Motori E, Schönbauer C, Schnorrer F, Winklhofer KF, Klein R.

EMBO J. 2014 Feb 18;33(4):341-55. doi: 10.1002/embj.201284290. Epub 2014 Jan 28. Erratum in: EMBO J. 2014 Apr 1:33(7):779.

18.

Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation.

Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N.

J Biol Chem. 2013 Jul 26;288(30):22019-32. doi: 10.1074/jbc.M113.467530. Epub 2013 Jun 10.

19.

Molecular events underlying Parkinson's disease - an interwoven tapestry.

Lim KL, Zhang CW.

Front Neurol. 2013 Apr 8;4:33. doi: 10.3389/fneur.2013.00033. eCollection 2013.

20.

Changes in properties of serine 129 phosphorylated α-synuclein with progression of Lewy-type histopathology in human brains.

Walker DG, Lue LF, Adler CH, Shill HA, Caviness JN, Sabbagh MN, Akiyama H, Serrano GE, Sue LI, Beach TG; Arizona Parkinson Disease Consortium.

Exp Neurol. 2013 Feb;240:190-204. doi: 10.1016/j.expneurol.2012.11.020. Epub 2012 Nov 28.

Supplemental Content

Support Center