Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.
2.

Artificial bio-nanomachines based on protein needles derived from bacteriophage T4.

Inaba H, Ueno T.

Biophys Rev. 2018 Apr;10(2):641-658. doi: 10.1007/s12551-017-0336-9. Epub 2017 Nov 16. Review.

3.

Most of it started with T4 phage and was then taken over.

Takeda S.

Biophys Rev. 2018 Apr;10(2):141-144. doi: 10.1007/s12551-017-0326-y. Epub 2017 Oct 6.

4.

Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses.

Chen Z, Sun L, Zhang Z, Fokine A, Padilla-Sanchez V, Hanein D, Jiang W, Rossmann MG, Rao VB.

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8184-E8193. doi: 10.1073/pnas.1708483114. Epub 2017 Sep 11.

5.

Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida.

Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ.

Sci Rep. 2017 Aug 1;7(1):7054. doi: 10.1038/s41598-017-07401-7.

6.

Refined Cryo-EM Structure of the T4 Tail Tube: Exploring the Lowest Dose Limit.

Zheng W, Wang F, Taylor NMI, Guerrero-Ferreira RC, Leiman PG, Egelman EH.

Structure. 2017 Sep 5;25(9):1436-1441.e2. doi: 10.1016/j.str.2017.06.017. Epub 2017 Jul 27.

PMID:
28757144
7.

Dynamic Model Exposes the Energetics and Dynamics of the Injection Machinery for Bacteriophage T4.

Maghsoodi A, Chatterjee A, Andricioaei I, Perkins NC.

Biophys J. 2017 Jul 11;113(1):195-205. doi: 10.1016/j.bpj.2017.05.029.

PMID:
28700918
8.

Crystal Structure of the Carboxy-Terminal Region of the Bacteriophage T4 Proximal Long Tail Fiber Protein Gp34.

Granell M, Namura M, Alvira S, Kanamaru S, van Raaij MJ.

Viruses. 2017 Jun 30;9(7). pii: E168. doi: 10.3390/v9070168.

9.

Protein interactions in the assembly of the tail of bacteriophage T4.

Arisaka F, Kanamaru S.

Biophys Rev. 2013 Jun;5(2):79-84. doi: 10.1007/s12551-013-0114-2. Epub 2013 Apr 24. Review.

10.

Molecular assembly and structure of the bacteriophage T4 tail.

Arisaka F, Yap ML, Kanamaru S, Rossmann MG.

Biophys Rev. 2016 Dec;8(4):385-396. doi: 10.1007/s12551-016-0230-x. Epub 2016 Nov 5. Review.

11.

Common Evolutionary Origin of Procapsid Proteases, Phage Tail Tubes, and Tubes of Bacterial Type VI Secretion Systems.

Fokine A, Rossmann MG.

Structure. 2016 Nov 1;24(11):1928-1935. doi: 10.1016/j.str.2016.08.013. Epub 2016 Sep 22.

12.

Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems.

Büttner CR, Wu Y, Maxwell KL, Davidson AR.

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10174-9. doi: 10.1073/pnas.1607966113. Epub 2016 Aug 23.

13.

Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate.

Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P.

Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9351-6. doi: 10.1073/pnas.1605883113. Epub 2016 Jul 28.

14.

TssA forms a gp6-like ring attached to the type VI secretion sheath.

Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A.

EMBO J. 2016 Aug 1;35(15):1613-27. doi: 10.15252/embj.201694024. Epub 2016 Jun 10.

15.

Structure of the host-recognition device of Staphylococcus aureus phage ϕ11.

Koç C, Xia G, Kühner P, Spinelli S, Roussel A, Cambillau C, Stehle T.

Sci Rep. 2016 Jun 10;6:27581. doi: 10.1038/srep27581.

16.

Role of bacteriophage T4 baseplate in regulating assembly and infection.

Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG.

Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2654-9. doi: 10.1073/pnas.1601654113. Epub 2016 Feb 29.

17.

The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules.

Legrand P, Collins B, Blangy S, Murphy J, Spinelli S, Gutierrez C, Richet N, Kellenberger C, Desmyter A, Mahony J, van Sinderen D, Cambillau C.

MBio. 2016 Jan 26;7(1):e01781-15. doi: 10.1128/mBio.01781-15.

18.

Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae.

Hardies SC, Thomas JA, Black L, Weintraub ST, Hwang CY, Cho BC.

Virology. 2016 Feb;489:116-27. doi: 10.1016/j.virol.2015.12.005. Epub 2015 Dec 31.

19.

A tail of two phages: genomic and functional analysis of Listeria monocytogenes phages vB_LmoS_188 and vB_LmoS_293 reveal the receptor-binding proteins involved in host specificity.

Casey A, Jordan K, Neve H, Coffey A, McAuliffe O.

Front Microbiol. 2015 Oct 9;6:1107. doi: 10.3389/fmicb.2015.01107. eCollection 2015.

20.

The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.

Gudeta DD, Bortolaia V, Amos G, Wellington EM, Brandt KK, Poirel L, Nielsen JB, Westh H, Guardabassi L.

Antimicrob Agents Chemother. 2015 Oct 19;60(1):151-60. doi: 10.1128/AAC.01424-15. Print 2016 Jan. Erratum in: Antimicrob Agents Chemother. 2016 Apr;60(4):2599.

Supplemental Content

Support Center