Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 73

1.

Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing.

Onufrak NJ, Forrest A, Gonzalez D.

Clin Ther. 2016 Sep;38(9):1930-47. doi: 10.1016/j.clinthera.2016.06.015. Review.

PMID:
27449411
2.

Relationship between Cefquinome PK/PD Parameters and Emergence of Resistance of Staphylococcus aureus in Rabbit Tissue-Cage Infection Model.

Xiong M, Wu X, Ye X, Zhang L, Zeng S, Huang Z, Wu Y, Sun J, Ding H.

Front Microbiol. 2016 Jun 7;7:874. doi: 10.3389/fmicb.2016.00874.

3.

Defining the Active Fraction of Daptomycin against Methicillin-Resistant Staphylococcus aureus (MRSA) Using a Pharmacokinetic and Pharmacodynamic Approach.

Garonzik SM, Lenhard JR, Forrest A, Holden PN, Bulitta JB, Tsuji BT.

PLoS One. 2016 Jun 10;11(6):e0156131. doi: 10.1371/journal.pone.0156131.

4.

Distinguishing Antimicrobial Models with Different Resistance Mechanisms via Population Pharmacodynamic Modeling.

Jacobs M, Grégoire N, Couet W, Bulitta JB.

PLoS Comput Biol. 2016 Mar 11;12(3):e1004782. doi: 10.1371/journal.pcbi.1004782.

5.

Tuberculous Pericarditis is Multibacillary and Bacterial Burden Drives High Mortality.

Pasipanodya JG, Mubanga M, Ntsekhe M, Pandie S, Magazi BT, Gumedze F, Myer L, Gumbo T, Mayosi BM.

EBioMedicine. 2015 Sep 21;2(11):1634-9. doi: 10.1016/j.ebiom.2015.09.034.

6.

Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?

Day T, Read AF.

PLoS Comput Biol. 2016 Jan 28;12(1):e1004689. doi: 10.1371/journal.pcbi.1004689.

7.

Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 2.

Drusano GL, Hope W, MacGowan A, Louie A.

Antimicrob Agents Chemother. 2015 Dec 28;60(3):1194-201. doi: 10.1128/AAC.02231-15. Review.

8.

Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 1.

Drusano GL, Louie A, MacGowan A, Hope W.

Antimicrob Agents Chemother. 2015 Dec 28;60(3):1183-93. doi: 10.1128/AAC.02177-15. Review.

9.

Evaluation of Daptomycin Exposure and Efficacy and Safety Endpoints To Support Risk-versus-Benefit Considerations.

Bhavnani SM, Ambrose PG, Hammel JP, Rubino CM, Drusano GL.

Antimicrob Agents Chemother. 2015 Dec 28;60(3):1600-7. doi: 10.1128/AAC.02967-15.

10.

Bacterial Species-Specific Activity of a Fluoroquinolone against Two Closely Related Pasteurellaceae with Similar MICs: Differential In Vitro Inoculum Effects and In Vivo Efficacies.

Lhermie G, El Garch F, Toutain PL, Ferran AA, Bousquet-Mélou A.

PLoS One. 2015 Oct 27;10(10):e0141441. doi: 10.1371/journal.pone.0141441.

11.

Evolutionary rescue: linking theory for conservation and medicine.

Alexander HK, Martin G, Martin OY, Bonhoeffer S.

Evol Appl. 2014 Dec;7(10):1161-79. doi: 10.1111/eva.12221. Review.

12.

Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent antimicrobial resistance in pigs.

Ahmad A, Græsbøll K, Christiansen LE, Toft N, Matthews L, Nielsen SS.

Antimicrob Agents Chemother. 2015 Mar;59(3):1634-42. doi: 10.1128/AAC.03919-14.

13.

Impact on resistance of the use of therapeutically equivalent generics: the case of ciprofloxacin.

Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O.

Antimicrob Agents Chemother. 2015 Jan;59(1):53-8. doi: 10.1128/AAC.03633-14.

14.

Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients.

Boisson M, Jacobs M, Grégoire N, Gobin P, Marchand S, Couet W, Mimoz O.

Antimicrob Agents Chemother. 2014 Dec;58(12):7331-9. doi: 10.1128/AAC.03510-14.

15.

Mathematical modeling of bacterial kinetics to predict the impact of antibiotic colonic exposure and treatment duration on the amount of resistant enterobacteria excreted.

Nguyen TT, Guedj J, Chachaty E, de Gunzburg J, Andremont A, Mentré F.

PLoS Comput Biol. 2014 Sep 11;10(9):e1003840. doi: 10.1371/journal.pcbi.1003840.

16.

Development of a population pharmacokinetic model characterizing the tissue distribution of azithromycin in healthy subjects.

Zheng S, Matzneller P, Zeitlinger M, Schmidt S.

Antimicrob Agents Chemother. 2014 Nov;58(11):6675-84. doi: 10.1128/AAC.02904-14.

17.

Perturbation of iron homeostasis promotes the evolution of antibiotic resistance.

Méhi O, Bogos B, Csörgő B, Pál F, Nyerges A, Papp B, Pál C.

Mol Biol Evol. 2014 Oct;31(10):2793-804. doi: 10.1093/molbev/msu223.

18.

How fitness reduced, antimicrobial resistant bacteria survive and spread: a multiple pig-multiple bacterial strain model.

Græsbøll K, Nielsen SS, Toft N, Christiansen LE.

PLoS One. 2014 Jul 9;9(7):e100458. doi: 10.1371/journal.pone.0100458.

19.

Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis.

Drusano GL, Neely M, Van Guilder M, Schumitzky A, Brown D, Fikes S, Peloquin C, Louie A.

PLoS One. 2014 Jul 8;9(7):e101311. doi: 10.1371/journal.pone.0101311.

20.

Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions.

Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL; International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases..

Lancet Infect Dis. 2014 Jun;14(6):498-509. doi: 10.1016/S1473-3099(14)70036-2. Review.

Items per page

Supplemental Content

Support Center