Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Combined use of protein biomarkers and network analysis unveils deregulated regulatory circuits in Duchenne muscular dystrophy.

Parolo S, Marchetti L, Lauria M, Misselbeck K, Scott-Boyer MP, Caberlotto L, Priami C.

PLoS One. 2018 Mar 12;13(3):e0194225. doi: 10.1371/journal.pone.0194225. eCollection 2018.

2.

The Role of Inflammation in Age-Related Sarcopenia.

Dalle S, Rossmeislova L, Koppo K.

Front Physiol. 2017 Dec 12;8:1045. doi: 10.3389/fphys.2017.01045. eCollection 2017. Review.

3.

Stability of Signaling Pathways during Aging-A Boolean Network Approach.

Schwab JD, Siegle L, Kühlwein SD, Kühl M, Kestler HA.

Biology (Basel). 2017 Dec 18;6(4). pii: E46. doi: 10.3390/biology6040046.

4.

Murine myoblast migration: influence of replicative ageing and nutrition.

Brown AD, Close GL, Sharples AP, Stewart CE.

Biogerontology. 2017 Dec;18(6):947-964. doi: 10.1007/s10522-017-9735-3. Epub 2017 Nov 7.

5.

Compensatory anabolic signaling in the sarcopenia of experimental chronic arthritis.

Little RD, Prieto-Potin I, Pérez-Baos S, Villalvilla A, Gratal P, Cicuttini F, Largo R, Herrero-Beaumont G.

Sci Rep. 2017 Jul 24;7(1):6311. doi: 10.1038/s41598-017-06581-6.

6.

Biochemical isolation of myonuclei employed to define changes to the myonuclear proteome that occur with aging.

Cutler AA, Dammer EB, Doung DM, Seyfried NT, Corbett AH, Pavlath GK.

Aging Cell. 2017 Aug;16(4):738-749. doi: 10.1111/acel.12604. Epub 2017 May 23.

7.

miR-29b contributes to multiple types of muscle atrophy.

Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, Das S, Xiao J.

Nat Commun. 2017 May 25;8:15201. doi: 10.1038/ncomms15201.

8.

Skeletal muscle aging: influence of oxidative stress and physical exercise.

Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP.

Oncotarget. 2017 Mar 21;8(12):20428-20440. doi: 10.18632/oncotarget.14670. Review.

9.

Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

Bullard SA, Seo S, Schilling B, Dyle MC, Dierdorff JM, Ebert SM, DeLau AD, Gibson BW, Adams CM.

J Biol Chem. 2016 Aug 19;291(34):17496-17509. doi: 10.1074/jbc.M116.740308. Epub 2016 Jun 29.

10.

Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB.

Haustead DJ, Stevenson A, Saxena V, Marriage F, Firth M, Silla R, Martin L, Adcroft KF, Rea S, Day PJ, Melton P, Wood FM, Fear MW.

Sci Rep. 2016 May 27;6:26846. doi: 10.1038/srep26846.

11.

The functional consequences of age-related changes in microRNA expression in skeletal muscle.

Soriano-Arroquia A, House L, Tregilgas L, Canty-Laird E, Goljanek-Whysall K.

Biogerontology. 2016 Jun;17(3):641-54. doi: 10.1007/s10522-016-9638-8. Epub 2016 Feb 27.

12.

Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors.

Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP.

Biogerontology. 2016 Jun;17(3):619-39. doi: 10.1007/s10522-015-9621-9. Epub 2015 Nov 4.

13.

Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases.

Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann C, Zhao Y, Mobbs CV; GTEx Consortium, Schadt EE, Zhu J, Tu Z.

Sci Rep. 2015 Oct 19;5:15145. doi: 10.1038/srep15145. Erratum in: Sci Rep. 2016;6:19384. Goldman, Jakob [corrected to Goldmann, Jakob].

14.

Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training.

Bowen TS, Schuler G, Adams V.

J Cachexia Sarcopenia Muscle. 2015 Sep;6(3):197-207. doi: 10.1002/jcsm.12043. Epub 2015 Jun 3. Review.

15.

Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.

Ebert SM, Dyle MC, Bullard SA, Dierdorff JM, Murry DJ, Fox DK, Bongers KS, Lira VA, Meyerholz DK, Talley JJ, Adams CM.

J Biol Chem. 2015 Oct 16;290(42):25497-511. doi: 10.1074/jbc.M115.681445. Epub 2015 Sep 3.

17.

An in vitro model of skeletal muscle volume regulation.

Wibberley A, Staunton CA, Feetham CH, Vereninov AA, Barrett-Jolley R.

PLoS One. 2015 Jun 1;10(6):e0127889. doi: 10.1371/journal.pone.0127889. eCollection 2015.

18.

Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise.

Brook MS, Wilkinson DJ, Phillips BE, Perez-Schindler J, Philp A, Smith K, Atherton PJ.

Acta Physiol (Oxf). 2016 Jan;216(1):15-41. doi: 10.1111/apha.12532. Epub 2015 Jun 21. Review.

19.

Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing.

Voutetakis K, Chatziioannou A, Gonos ES, Trougakos IP.

Oxid Med Cell Longev. 2015;2015:732914. doi: 10.1155/2015/732914. Epub 2015 Apr 21.

20.

Unraveling the molecular signatures of oxidative phosphorylation to cope with the nutritionally changing metabolic capabilities of liver and muscle tissues in farmed fish.

Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J.

PLoS One. 2015 Apr 15;10(4):e0122889. doi: 10.1371/journal.pone.0122889. eCollection 2015.

Supplemental Content

Support Center