Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 17

1.

Active directional switching of surface plasmon polaritons using a phase transition material.

Kim SJ, Yun H, Park K, Hong J, Yun JG, Lee K, Kim J, Jeong SJ, Mun SE, Sung J, Lee YW, Lee B.

Sci Rep. 2017 Mar 6;7:43723. doi: 10.1038/srep43723.

2.

Realization of Plasmonic Microcavity with Full Transverse and Longitudinal Mode Selection.

Liu J, Chen YG, Gan L, Xiao TH, Li ZY.

Sci Rep. 2016 Jun 8;6:27565. doi: 10.1038/srep27565.

3.

Integrated ultracompact and broadband wavelength demultiplexer based on multi-component nano-cavities.

Lu C, Liu YC, Hu X, Yang H, Gong Q.

Sci Rep. 2016 Jun 6;6:27428. doi: 10.1038/srep27428.

4.

Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing.

Xiao B, Pradhan SK, Santiago KC, Rutherford GN, Pradhan AK.

Sci Rep. 2016 Apr 13;6:24385. doi: 10.1038/srep24385.

5.

Leaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures.

Cai BG, Li YB, Ma HF, Jiang WX, Cheng Q, Cui TJ.

Sci Rep. 2016 Apr 1;6:23974. doi: 10.1038/srep23974.

6.

Phase change dispersion of plasmonic nano-objects.

Zeng X, Hu H, Gao Y, Ji D, Zhang N, Song H, Liu K, Jiang S, Gan Q.

Sci Rep. 2015 Jul 29;5:12665. doi: 10.1038/srep12665.

7.

Magnetically tunable broadband transmission through a single small aperture.

Bi K, Liu W, Guo Y, Dong G, Lei M.

Sci Rep. 2015 Jul 22;5:12489. doi: 10.1038/srep12489.

8.

Enhanced optical transmission and Fano resonance through a nanostructured metal thin film.

Xiao B, Pradhan SK, Santiago KC, Rutherford GN, Pradhan AK.

Sci Rep. 2015 May 18;5:10393. doi: 10.1038/srep10393.

9.

Ultra-broadband and strongly enhanced diffraction with metasurfaces.

Zhang Y, Zhou L, Li JQ, Wang QJ, Huang CP.

Sci Rep. 2015 May 14;5:10119. doi: 10.1038/srep10119.

10.

K-space polarimetry of bullseye plasmon antennas.

Osorio CI, Mohtashami A, Koenderink AF.

Sci Rep. 2015 Apr 30;5:9966. doi: 10.1038/srep09966.

11.

Beaming Visible Light with a Plasmonic Aperture Antenna.

Yi JM, Cuche A, Devaux E, Genet C, Ebbesen TW.

ACS Photonics. 2014 Apr 16;1(4):365-370. Epub 2014 Mar 5.

12.

Ultrasonic lens based on a subwavelength slit surrounded by grooves.

Gomez-Lozano V, Candelas P, Belmar F, Rubio C, Uris A.

Sensors (Basel). 2014 May 19;14(5):8821-8. doi: 10.3390/s140508821.

13.

Plasmon-controlled fluorescence: A new detection technology.

Lakowicz JR, Chowdhury MH, Ray K, Zhang J, Fu Y, Badugu R, Sabanayagam CR, Nowaczyk K, Szmacinski H, Aslan K, Geddes CD.

Proc SPIE Int Soc Opt Eng. 2006;6099:609909.

14.

Plasmonics in Biology and Plasmon-Controlled Fluorescence.

Lakowicz JR.

Plasmonics. 2006 Mar 1;1(1):5-33.

15.

Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy.

Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K.

Analyst. 2008 Oct;133(10):1308-46. doi: 10.1039/b802918k. Epub 2008 Jul 16. Review.

16.

Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures.

Stark PR, Halleck AE, Larson DN.

Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18902-6. Epub 2007 Nov 16.

17.

Supplemental Content

Support Center