Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 40

1.

Smek promotes corticogenesis through regulating Mbd3's stability and Mbd3/NuRD complex recruitment to genes associated with neurogenesis.

Moon BS, Yun HM, Chang WH, Steele BH, Cai M, Choi SH, Lu W.

PLoS Biol. 2017 May 3;15(5):e2001220. doi: 10.1371/journal.pbio.2001220. eCollection 2017 May.

2.

Epigenetic silencing of serine protease HTRA1 drives polyploidy.

Schmidt N, Irle I, Ripkens K, Lux V, Nelles J, Johannes C, Parry L, Greenow K, Amir S, Campioni M, Baldi A, Oka C, Kawaichi M, Clarke AR, Ehrmann M.

BMC Cancer. 2016 Jul 7;16:399. doi: 10.1186/s12885-016-2425-8.

3.

Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation.

Wood KH, Zhou Z.

Front Genet. 2016 May 26;7:93. doi: 10.3389/fgene.2016.00093. eCollection 2016. Review.

4.

Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

Wood KH, Johnson BS, Welsh SA, Lee JY, Cui Y, Krizman E, Brodkin ES, Blendy JA, Robinson MB, Bartolomei MS, Zhou Z.

Epigenomics. 2016 Apr;8(4):455-73. doi: 10.2217/epi-2015-0004. Epub 2016 Apr 12.

5.

Targeting the WNT Signaling Pathway in Cancer Therapeutics.

Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA, Lieu CH.

Oncologist. 2015 Oct;20(10):1189-98. doi: 10.1634/theoncologist.2015-0057. Epub 2015 Aug 25. Review.

6.

Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells.

Devailly G, Grandin M, Perriaud L, Mathot P, Delcros JG, Bidet Y, Morel AP, Bignon JY, Puisieux A, Mehlen P, Dante R.

Nucleic Acids Res. 2015 Jul 13;43(12):5838-54. doi: 10.1093/nar/gkv508. Epub 2015 May 24.

7.

An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex.

Desai MA, Webb HD, Sinanan LM, Scarsdale JN, Walavalkar NM, Ginder GD, Williams DC Jr.

Nucleic Acids Res. 2015 Mar 31;43(6):3100-13. doi: 10.1093/nar/gkv168. Epub 2015 Mar 9.

8.

Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2'-deoxycytidine-triggered invasiveness.

Cheishvili D, Chik F, Li CC, Bhattacharya B, Suderman M, Arakelian A, Hallett M, Rabbani SA, Szyf M.

Carcinogenesis. 2014 Nov;35(11):2436-46. doi: 10.1093/carcin/bgu181. Epub 2014 Sep 1.

9.

The nucleosome remodeling and deacetylase complex in development and disease.

Basta J, Rauchman M.

Transl Res. 2015 Jan;165(1):36-47. doi: 10.1016/j.trsl.2014.05.003. Epub 2014 May 10. Review.

10.

Time-Resolved Fluorescence Resonance Energy Transfer Assay for Discovery of Small-Molecule Inhibitors of Methyl-CpG Binding Domain Protein 2.

Wyhs N, Walker D, Giovinazzo H, Yegnasubramanian S, Nelson WG.

J Biomol Screen. 2014 Aug;19(7):1060-9. doi: 10.1177/1087057114526433. Epub 2014 Mar 7.

11.

LEF1 and B9L shield β-catenin from inactivation by Axin, desensitizing colorectal cancer cells to tankyrase inhibitors.

de la Roche M, Ibrahim AE, Mieszczanek J, Bienz M.

Cancer Res. 2014 Mar 1;74(5):1495-505. doi: 10.1158/0008-5472.CAN-13-2682. Epub 2014 Jan 13.

12.

Methylated DNA binding domain protein 2 (MBD2) coordinately silences gene expression through activation of the microRNA hsa-mir-496 promoter in breast cancer cell line.

Alvarado S, Wyglinski J, Suderman M, Andrews SA, Szyf M.

PLoS One. 2013 Oct 29;8(10):e74009. doi: 10.1371/journal.pone.0074009. eCollection 2013.

13.

Mbd2 promotes foxp3 demethylation and T-regulatory-cell function.

Wang L, Liu Y, Han R, Beier UH, Thomas RM, Wells AD, Hancock WW.

Mol Cell Biol. 2013 Oct;33(20):4106-15. doi: 10.1128/MCB.00144-13. Epub 2013 Aug 26.

14.

The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes.

Cai Y, Geutjes EJ, de Lint K, Roepman P, Bruurs L, Yu LR, Wang W, van Blijswijk J, Mohammad H, de Rink I, Bernards R, Baylin SB.

Oncogene. 2014 Apr 24;33(17):2157-68. doi: 10.1038/onc.2013.178. Epub 2013 May 27.

15.

Interplay between the cancer genome and epigenome.

Shen H, Laird PW.

Cell. 2013 Mar 28;153(1):38-55. doi: 10.1016/j.cell.2013.03.008. Review.

16.

DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases.

Aryee MJ, Liu W, Engelmann JC, Nuhn P, Gurel M, Haffner MC, Esopi D, Irizarry RA, Getzenberg RH, Nelson WG, Luo J, Xu J, Isaacs WB, Bova GS, Yegnasubramanian S.

Sci Transl Med. 2013 Jan 23;5(169):169ra10. doi: 10.1126/scitranslmed.3005211.

17.

Genomic insights into cancer-associated aberrant CpG island hypermethylation.

Sproul D, Meehan RR.

Brief Funct Genomics. 2013 May;12(3):174-90. doi: 10.1093/bfgp/els063. Epub 2013 Jan 21. Review.

18.

Wnt signaling in cancer.

Polakis P.

Cold Spring Harb Perspect Biol. 2012 May 1;4(5). pii: a008052. doi: 10.1101/cshperspect.a008052. Review.

19.

The Roles of the Methyl-CpG Binding Proteins in Cancer.

Parry L, Clarke AR.

Genes Cancer. 2011 Jun;2(6):618-30. doi: 10.1177/1947601911418499.

20.

Cancer biology and NuRD: a multifaceted chromatin remodelling complex.

Lai AY, Wade PA.

Nat Rev Cancer. 2011 Jul 7;11(8):588-96. doi: 10.1038/nrc3091. Review.

Supplemental Content

Support Center