Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 51

1.

IL-6 potentiates BMP-2-induced osteogenesis and adipogenesis via two different BMPR1A-mediated pathways.

Huang RL, Sun Y, Ho CK, Liu K, Tang QQ, Xie Y, Li Q.

Cell Death Dis. 2018 Feb 2;9(2):144. doi: 10.1038/s41419-017-0126-0.

2.

Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment.

Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A.

Int J Mol Sci. 2018 Jan 25;19(2). pii: E360. doi: 10.3390/ijms19020360. Review.

3.

BMPs as new insulin sensitizers: enhanced glucose uptake in mature 3T3-L1 adipocytes via PPARγ and GLUT4 upregulation.

Schreiber I, Dörpholz G, Ott CE, Kragesteen B, Schanze N, Lee CT, Köhrle J, Mundlos S, Ruschke K, Knaus P.

Sci Rep. 2017 Dec 8;7(1):17192. doi: 10.1038/s41598-017-17595-5.

4.

Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X.

Exp Biol Med (Maywood). 2017 Aug;242(14):1444-1452. doi: 10.1177/1535370217719059. Epub 2017 Jul 1.

5.

Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken.

Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X.

PLoS One. 2017 Feb 15;12(2):e0172389. doi: 10.1371/journal.pone.0172389. eCollection 2017.

6.

Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice.

Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang Z, Qi C, Wang T, Wang X.

Nutrients. 2016 Aug 10;8(8). pii: E488. doi: 10.3390/nu8080488.

7.

BMP-TAK1 (MAP3K7) Induces Adipocyte Differentiation Through PPARγ Signaling.

Zhang Y, O'Keefe RJ, Jonason JH.

J Cell Biochem. 2017 Jan;118(1):204-210. doi: 10.1002/jcb.25626. Epub 2016 Jun 27.

8.

PPARγ signaling and emerging opportunities for improved therapeutics.

Wang S, Dougherty EJ, Danner RL.

Pharmacol Res. 2016 Sep;111:76-85. doi: 10.1016/j.phrs.2016.02.028. Epub 2016 Jun 4. Review.

9.

p38 MAPK Signaling in Osteoblast Differentiation.

Rodríguez-Carballo E, Gámez B, Ventura F.

Front Cell Dev Biol. 2016 May 6;4:40. doi: 10.3389/fcell.2016.00040. eCollection 2016. Review.

10.

Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation.

Pérez-Campo FM, Riancho JA.

Curr Genomics. 2015 Dec;16(6):368-83. doi: 10.2174/1389202916666150817202559.

11.

PPARs: Protectors or Opponents of Myocardial Function?

Pol CJ, Lieu M, Drosatos K.

PPAR Res. 2015;2015:835985. doi: 10.1155/2015/835985. Epub 2015 Dec 2. Review.

12.

Enrichment of Adipose-Derived Stromal Cells for BMPR1A Facilitates Enhanced Adipogenesis.

Zielins ER, Paik K, Ransom RC, Brett EA, Blackshear CP, Luan A, Walmsley GG, Atashroo DA, Senarath-Yapa K, Momeni A, Rennert R, Sorkin M, Seo EY, Chan CK, Gurtner GC, Longaker MT, Wan DC.

Tissue Eng Part A. 2016 Feb;22(3-4):214-21. doi: 10.1089/ten.TEA.2015.0278. Epub 2016 Jan 27.

13.

Obesity Resistance and Enhanced Insulin Sensitivity in Ahnak-/- Mice Fed a High Fat Diet Are Related to Impaired Adipogenesis and Increased Energy Expenditure.

Shin JH, Kim IY, Kim YN, Shin SM, Roh KJ, Lee SH, Sohn M, Cho SY, Lee SH, Ko CY, Kim HS, Choi CS, Bae YS, Seong JK.

PLoS One. 2015 Oct 14;10(10):e0139720. doi: 10.1371/journal.pone.0139720. eCollection 2015. Erratum in: PLoS One. 2015;10(12):e0144478.

14.

Adipogenesis is under surveillance of Hsp90 and the high molecular weight Immunophilin FKBP51.

Toneatto J, Charó NL, Galigniana NM, Piwien-Pilipuk G.

Adipocyte. 2015 May 13;4(4):239-47. doi: 10.1080/21623945.2015.1049401. eCollection 2015 Oct-Dec. Review.

15.

G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY.

Wang S, Awad KS, Elinoff JM, Dougherty EJ, Ferreyra GA, Wang JY, Cai R, Sun J, Ptasinska A, Danner RL.

J Biol Chem. 2015 Aug 7;290(32):19544-57. doi: 10.1074/jbc.M115.638924. Epub 2015 Jun 23.

16.

Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1.

Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, Hsu CY, Zhang H, Lee KS, Wang C, Li C, Chen X, Jia H, Zhang X, Soo C, Ting K.

Stem Cells. 2015 Mar;33(3):904-15. doi: 10.1002/stem.1884.

17.

ISL1 regulates peroxisome proliferator-activated receptor γ activation and early adipogenesis via bone morphogenetic protein 4-dependent and -independent mechanisms.

Ma X, Yang P, Kaplan WH, Lee BH, Wu LE, Yang JY, Yasunaga M, Sato K, Chisholm DJ, James DE.

Mol Cell Biol. 2014 Oct 1;34(19):3607-17. doi: 10.1128/MCB.00583-14. Epub 2014 Jul 21.

18.

Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch.

Addison WN, Fu MM, Yang HX, Lin Z, Nagano K, Gori F, Baron R.

Mol Cell Biol. 2014 Aug;34(16):3076-85. doi: 10.1128/MCB.00185-14. Epub 2014 Jun 2.

19.

Central Role of the PPARγ Gene Network in Coordinating Beef Cattle Intramuscular Adipogenesis in Response to Weaning Age and Nutrition.

Moisá SJ, Shike DW, Faulkner DB, Meteer WT, Keisler D, Loor JJ.

Gene Regul Syst Bio. 2014 Jan 8;8:17-32. doi: 10.4137/GRSB.S11782. eCollection 2014.

20.

Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation.

James AW.

Scientifica (Cairo). 2013;2013:684736. doi: 10.1155/2013/684736. Epub 2013 Dec 12. Review.

Supplemental Content

Support Center